## Math 251. WEEK in REVIEW 2. Fall 2013

1. Find the traces of the given surface in the planes $x=k, y=k, z=k$.
(a) $y-x^{2}-9 z^{2}=0$
(b) $16 x^{2}-y^{2}-z^{2}=9$
2. Sketch each of the following:
(a) $y-x^{2}-9 z^{2}=0$
(b) $16 x^{2}-y^{2}-z^{2}=9$
3. Identify the surface and make a rough sketch that shows its position and orientation
(a) $z=(x-1)^{2}+(y+5)^{2}+7$
(b) $4 x^{2}-y^{2}+(z-4)^{2}=20$
(c) $x^{2}+y^{2}+z+6 x-2 y+10=0$
4. Find an equation of the surface generated by revolving the curve given by $y=25 x^{2}$ and $z=0$ about the $y$ axis.
5. Find the domain of $\vec{r}(t)=<\ln \left(4-t^{2}\right), \sqrt{1+t}, \sin (\pi t)>$.
6. Find a vector equation for the curve of intersection of the surfaces $x=y^{2}$ and $z=x$ in terms of the parameter $y=t$.
7. Does the graph of the vector-function $\vec{r}(t)=\left\langle\frac{1-t^{2}}{t}, \frac{t+1}{t}, t\right\rangle$ lie in the plane $x-y+z=-1 ?$
8. Find the points where the curve $\vec{r}(t)=<1-t, t^{2}, t^{2}>$ intersects the plane $5 x-y+2 z=-1$.
9. Find parametric equations of the line tangent to the graph of $\vec{r}(t)=<e^{-t}, t^{3}, \ln t>$ at the point $t=1$.
10. Find symmetric equations of the line tangent to the graph of $\vec{r}(t)=\left\langle t^{2}, 4-t^{2},-\frac{3}{1+t}\right\rangle$ at the point $(4,0,3)$.
11. Let

$$
\vec{r}_{1}(t)=<\arctan t, t,-t^{4}>
$$

and

$$
\vec{r}_{2}(t)=<t^{2}-t, 2 \ln t, \frac{\sin (2 \pi t)}{2 \pi}>
$$

(a) Show that the graphs of the given vector-functions intersect at the origin.
(b) Find their angle of intersection at the origin.
12. Evaluate the integral $\int_{1}^{4}\left(\sqrt{t} \vec{\imath}+t e^{-t} \vec{\jmath}+\frac{1}{t^{2}} \vec{k}\right) d t$
13. A moving particle starts at an initial position $\vec{r}(0)=<1,0,0>$ with initial velocity $\vec{v}(0)=\vec{\imath}-\vec{\jmath}+\vec{k}$. Its acceleration is $\vec{a}(t)=4 t \vec{\imath}+6 t \vec{\jmath}+\vec{k}$. Find its velocity and position at time $t$.

