1. Find the traces of the given surface in the planes x = k, y = k, z = k.

(a) $y - x^2 - 9z^2 = 0$

(b)
$$16x^2 - y^2 - z^2 = 9$$

2. Sketch each of the following:

(a)
$$y - x^2 - 9z^2 = 0$$

(b)
$$16x^2 - y^2 - z^2 = 9$$

3. Identify the surface and make a rough sketch that shows its position and orientation

(a) $z = (x - 1)^2 + (y + 5)^2 + 7$

(b)
$$4x^2 - y^2 + (z - 4)^2 = 20$$

(c)
$$x^2 + y^2 + z + 6x - 2y + 10 = 0$$

4. Find an equation of the surface generated by revolving the curve given by $y = 25x^2$ and z = 0 about the y axis.

5. Find the domain of $\vec{r}(t) = < \ln(4-t^2), \sqrt{1+t}, \sin(\pi t) >$.

6. Find a vector equation for the curve of intersection of the surfaces $x = y^2$ and z = x in terms of the parameter y = t.

7. Does the graph of the vector-function $\vec{r}(t) = \left\langle \frac{1-t^2}{t}, \frac{t+1}{t}, t \right\rangle$ lie in the plane x - y + z = -1?

8. Find the points where the curve $\vec{r}(t) = \langle 1-t, t^2, t^2 \rangle$ intersects the plane 5x - y + 2z = -1.

9. Find parametric equations of the line tangent to the graph of $\vec{r}(t) = \langle e^{-t}, t^3, \ln t \rangle$ at the point t = 1.

10. Find symmetric equations of the line tangent to the graph of $\vec{r}(t) = \left\langle t^2, 4 - t^2, -\frac{3}{1+t} \right\rangle$ at the point (4, 0, 3).

11. Let

$$\vec{r}_1(t) = < \arctan t, t, -t^4 >$$

and

$$\vec{r}_2(t) = \left\langle t^2 - t, 2\ln t, \frac{\sin(2\pi t)}{2\pi} \right\rangle.$$

(a) Show that the graphs of the given vector-functions intersect at the origin.

(b) Find their angle of intersection at the origin.

12. Evaluate the integral
$$\int_{1}^{4} \left(\sqrt{t}\vec{\imath} + te^{-t}\vec{\jmath} + \frac{1}{t^2}\vec{k} \right) dt$$

13. A moving particle starts at an initial position $\vec{r}(0) = \langle 1, 0, 0 \rangle$ with initial velocity $\vec{v}(0) = \vec{i} - \vec{j} + \vec{k}$. Its acceleration is $\vec{a}(t) = 4t\vec{i} + 6t\vec{j} + \vec{k}$. Find its velocity and position at time t.