Math 251. WEEK in REVIEW 3. Fall 2013

1. Let $f(x, y)=\sin (x y)+\pi$. Find $f(x-y, x+y)$.
2. Let $f(x, y, z)=y+x z$. Find $f\left(y-z, x^{3}, y+z\right)$.
3. Find the domain and range of the functions:
(a) $f(x, y)=\ln \left(2-x^{2}-y^{2}\right)$;
(b) $f(x, y, z)=e^{-\frac{1}{x^{2}+y^{2}+z^{2}}}$
4. Sketch the graphs of the functions:
(a) $f(x, y)=x^{2}+y^{2}-3$
(b) $f(x, y)=\sqrt{4-x^{2}-y^{2}}$
(c) $f(x, y)=-2 x-4 y+4$
5. Draw several level curves of the functions
(a) $f(x, y)=\sqrt{x-y}$
(b) $f(x, y)=e^{-x^{2}-y^{2}}$
6. Describe and sketch several level surfaces of the function $f(x, y, z)=-x^{2}-y^{2}-z^{2}$
7. Find the first partial derivatives of the functions
(a) $f(x, y)=y^{x^{y}}$
(b) $g(x, y, z)=x \cos \frac{y}{x+z}$
(c) $h(x, y, z)=x z \tan \left(\frac{y}{x}\right)$
8. Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ if

$$
x y z=\cos (x+y+z)
$$

9. Determine whether the function

$$
f(x, y)=e^{-x} \cos y-e^{-y} \cos x
$$

satisfies the Laplace equation $f_{x x}+f_{y y}=0$.
10. Determine whether the function

$$
f(t, x)=\cos (x-a t)+(x+a t)^{2}
$$

satisfies the wave equation $f_{t t}=a^{2} f_{x x}$,
11. If $u=x^{y}$, show that $\frac{x}{y} \frac{\partial u}{\partial x}+\frac{1}{\ln x} \frac{\partial u}{\partial y}=2 u$.
12. Where does the plane tangent to the surface $z=e^{x-y}$ at $(1,1,1)$ meet the z-axis?
13. Show that the surfaces given by $f(x, y)=x^{2}+y^{2}$ and $g(x, y)=-x^{2}-y^{2}+x y^{3}$ have the same tangent plane at $(0,0)$.
14. Find the differential of the function

$$
f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
$$

15. Use differentials to estimate

$$
\sqrt{(4.01)^{2}+(3.98)^{2}+(2.02)^{2}}
$$

16. The two legs of a right triangle are measured as 5 m and 12 m respectively, with a possible error in measurement of at most 0.2 cm in each. Use differentials to estimate the maximum error in the calculated value of the area of the triangle.
