Math 251. WEEK in REVIEW 4. Fall 2013

1. If $z=y+f\left(x^{2}-y^{2}\right)$, where f is differentiable, show that

$$
y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=x
$$

2. Let

$$
w=\cos x y+y \cos x
$$

where

$$
x=e^{-t}+3 s, y=5 e^{2 t}-\sqrt{s}
$$

Find $\frac{\partial w}{\partial t}$ and $\frac{\partial w}{\partial s}$.
3. If

$$
y z^{4}+x z^{3}=e^{x y z}
$$

find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
4. Let

$$
f(x, y, z)=x^{2} y+x \sqrt{1+z}
$$

(a) Find $\nabla f(1,2,3)$, the gradient of the function at $(1,2,3)$.
(b) Find $D_{v} f(1,2,3)$, the directional derivative of f at $(1,2,3)$ in the direction of $\vec{v}=$ $2 \vec{i}+\vec{j}-2 \vec{k}$.
5. (a) Find the direction in which $f(x, y, z)=z e^{x y}$ increases most rapidly at the point $(0,1,2)$.
(b) What is the maximum rate of increase?
(c) What is the largest rate of decrease of f at this point? In which direction does this change occur?
(d) When is the directional derivative at this point is half of its maximum value?
6. (a) Find a unit normal vector to the surface $\cos (x y)=e^{z}-2$ at $(1, \pi, 0)$.
(b) Write an equation of the tangent plane to the surface at $(1, \pi, 0)$.
7. Find the local maximum and local minimum values, and saddle points if any, of the function $f(x, y)=x^{2}-y^{2}+x y$
8. Find the local maximum and local minimum values, and saddle points if any, of the function $f(x, y)=e^{x+2 y}\left(x^{2}-y^{2}\right)$
9. Find the absolute maximum and minimum values of $f(x, y)=3 x^{2} y-x^{3}-y^{4}$ on the closed triangular region in the $x y$-plane with the vertices $(0,0),(1,1)$, and $(1,0)$.

