Math 251. WEEK in REVIEW 6. Fall 2013

1. Find the integral $\iint_{R} \frac{y \cos y}{x} d A$, where
$R=\left\{(x, y) \mid 1 \leq x \leq e^{4}, 0 \leq y \leq \pi / 2\right\}$.
2. Evaluate $\iint_{D} \frac{y}{\sqrt{1+x^{2}}} d A$ where D is the region in the first quadrant bounded by $x=$ $y^{2}, x=4, y=0$.
3. Evaluate $\iint_{R} y^{2} \sin \frac{x y}{2} d A$ where R is the region bounded by $x=0, y=\sqrt{\pi}, y=x$.
4. Evaluate $\int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y$ by reversing the order of integration.
5. Evaluate $\int_{0}^{1} \int_{2 x^{2}}^{2} x^{3} \sin y^{3} d y d x$.
6. Graph the region and change the order of integration.
a) $\int_{0}^{1} \int_{0}^{x^{3}} f(x, y) d y d x+\int_{1}^{2} \int_{0}^{2-x} f(x, y) d y d x$
b) $\int_{0}^{1} \int_{0}^{\sqrt{y}} f(x, y) d x d y+\int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-y^{2}}} f(x, y) d x d y$
7. Let the region D be the parallelogram with the vertices $(0,0),(1,2),(5,4)$, and $(4,2)$. Write the double integral $\iint_{D} f(x, y) d A$ as a sum of iterated integrals (with the least number of terms).
8. Sketch the region bounded by $y^{2}=2 x$ (or $x=\frac{y^{2}}{2}$), the line $x+y=4$ and the x-axis, in the first quadrant. Find the area of the region using a double integral.
9. Describe the solid which volume is given by the integral $\int_{0}^{2} \int_{y^{2}}^{4}\left(x^{2}+y^{2}\right) d x d y$ and find the volume.
10. Find the volume of the solid bounded by $z=1+x+y, z=0, x+y=1, x=0, y=0$.
