Math 251. WEEK in REVIEW 7. Fall 2013

1. Sketch the curve $r^{2}=\cos 2 \theta$. Find the area inside the curve.
2. Use a double integral in polar coordinates to evaluate the area of the region inside the circle $r=4 \sin \theta$ and outside the circle $r=2$.
3. Use polar coordinates to evaluate

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \ln \left(x^{2}+y^{2}+1\right) d x d y
$$

4. Find the volume of the solid bounded by the surfaces

$$
z=\sqrt{64-x^{2}-y^{2}} \text { and } z=\frac{1}{12}\left(x^{2}+y^{2}\right)
$$

5. (a) Find the mass of the plate bounded by $x^{2}+y^{2}=4, x^{2}+y^{2}=9$, if $x \leq 0$ and $y \geq 0$ if the density is $\delta(x, y)=\frac{y-4 x}{x^{2}+y^{2}}$.
(b) Find the center of mass of the plate bounded by

$$
y=x^{2} \text { and } y=x
$$

if the density at any point is proportional to the distance from the y-axis.
6. Find the volume of the region bounded by the parabolic cylinders $z=x^{2}, z=2-x^{2}$ and by the planes $y=0, y+z=4$.
7. Write the equation $x^{2}+y^{2}+z^{2}=4 y$ in cylindrical and spherical coordinates.
8. Convert the integral

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} x y z d z d x d y
$$

to an integral in cylindrical coordinates, but don't evaluate it.
9. Convert the integral

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y
$$

to an integral in spherical coordinates, but don't evaluate it.
10. Use cylindrical and spherical coordinates to find the volume of the ice-cream cone bounded above by the sphere $x^{2}+y^{2}+z^{2}=5$ and below by the cone $z=2 \sqrt{x^{2}+y^{2}}$.
11. Let E be the solid region bounded below by the cone $z^{2}=x^{2}+y^{2}, z \geq 0$ and above by the plane $z=4$. Set up the integral for computing the mass of the solid if the density is $\rho(x, y, z)=x y z$ in
(a) cylindrical coordinates
(b) in spherical coordinates
12. Find the center of mass of a solid right circular cone (the centroid of the cone) with height H and base radius R assuming that the density is homogeneous.

