1. Given the vector field $\vec{F}=z \vec{\imath}+2 y z \vec{\jmath}+\left(x+y^{2}\right) \vec{k}$.
(a) Find the divergence of the field.
(b) Find the curl of the field.
(c) Is the given field conservative? If it is, find a potential function.
(d) Compute $\int_{C} z d x+2 y z d y+\left(x+y^{2}\right) d z$ where C is the positively oriented curve $y^{2}+z^{2}=4, x=5$.
(e) Compute $\int_{C} z d x+2 y z d y+\left(x+y^{2}\right) d z$ where C consists of the three line segments: from $(0,0,0)$ to $(4,0,0)$, from $(4,0,0)$ to $(2,3,1)$, and from $(2,3,1)$ to $(1,1,1)$.
2. Is there a vector field such that $\operatorname{curl} \vec{F}=-2 x \vec{\imath}+3 y z \vec{\jmath}-x z^{2} \vec{k}$?
3. Identify the surface $x=\sqrt{u} \cos v, y=5 u, z=\sqrt{u} \sin v$.
4. Identify the surface which is the graph of the vector-function $\vec{r}(u, v)=<u+v, u-v, u>$.
5. Find a parametric representation of the following surfaces:
(a) $x+2 y+3 z=0$;
(b) the portion of the plane $x+2 y+3 z=0$ in the first octant;
(c) the portion of the plane $x+2 y+3 z=0$ inside the cylinder $x^{2}+y^{2}=9$;
(d) $z+z x^{2}-y=0$;
(e) $y=x^{2}$;
(f) the portion of the cylinder $x^{2}+z^{2}=25$ that extends between the planes $y=-1$ and $y=3$
6. Find an equation of the plane tangent to the surface $x=u, y=2 v, z=u^{2}+v^{2}$ at the point ($1,4,5$).
7. Given a sphere of radius 2 centered at the origin, find an equation for the plane tangent to it at the point $(1,1, \sqrt{2})$ considering the sphere as
(a) the graph of $g(x, y)=\sqrt{4-x^{2}-y^{2}}$ (Note that the graph of $g(x, y)$ is the upper half-sphere);
(b) a level surface of $f(x, y, z)=x^{2}+y^{2}+z^{2}$;
(c) a surface parametrized by the spherical coordinates.
8. Find the area of the part of the cylinder $x^{2}+z^{2}=1$ which lies between the planes $y=0$ and $x+y+z=4$.
9. Find the area of the portion of the cone $x^{2}=y^{2}+z^{2}$ between the planes $x=0$ and $x=2$.
