\qquad
Thursday, Nov. 11, 2010
Quiz 11 (Sections 14.2, 14.3).
Dr. M. Vorobets
NAME (print): \qquad
No credit for unsupported answers will be given. Clearly indicate your final answer.

1. [4 pts.] Evaluate the line integral $\int_{C} x y^{2} d s$ if C is the right half of the circle $x^{2}+y^{2}=16$.
2. [3 pts.] Find $\int_{C} \vec{F} \cdot d \vec{r}$ if $\vec{F}=(y+z) \vec{\imath}-x^{2} \vec{\jmath}-4 y^{2} \vec{k}$ and C is given by $\vec{r}(t)=t \vec{\imath}+t^{2} \vec{\jmath}+t^{4} \vec{k}$, $0 \leq t \leq 1$.
3. [3 pts.] Determine whether or not the vector field

$$
\vec{F}(x, y)=\left(x^{2}+y\right) \vec{\imath}+\left(y^{2}+x\right) \vec{\jmath}
$$

is conservative. If it is, find a function f such that $\vec{F}=\nabla f$.

