MATH 251, Section \qquad
Thursday, Nov. 11, 2010

Quiz 12 (Sections 14.4, 14.5).
Dr. M. Vorobets

Due Tuesday, Nov. 16 at the beginning of class.
NAME (print): \qquad
No credit for unsupported answers will be given. Clearly indicate your final answer.

1. [3 pts.] Use Green's Theorem to evaluate $\oint_{C}(1+\tan x) d x+\left(x^{2}+e^{y}\right) d y$ where C is the positively oriented boundary of the region enclosed by the curves $y=\sqrt{x}, x=1$, and $y=0$.
2. [2 pts.] Find the divergence of the vector field $\vec{F}=e^{x y z} \vec{\imath}+\sin (x-y) \vec{\jmath}-\frac{x y}{z} \vec{k}$.
3. [5 pts.] Show that $\vec{F}(x, y, z)=y z(2 x+y) \vec{\imath}+x z(x+2 y) \vec{\jmath}+x y(x+y) \vec{k}$ is conservative and use this fact to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the curve C given by $\vec{r}(t)=(1+t) \vec{\imath}+\left(1+2 t^{2}\right) \vec{\jmath}+$ $\left(1+3 t^{3}\right) \vec{k}, 0 \leq t \leq 1$.
