MATH 251, Section
Thursday, Sept. 2, 2010
Due Tuesday, Sept. 7, 2010
NAME (print):
No credit for unsupported answers will be given. Clearly indicate your final answer

1. Find the direction angles of the vector $\vec{a}=-2 \vec{\imath}+3 \vec{\jmath}+\vec{k}$.

SOLUTION. The magnitute of the vector \vec{a} is

$$
|\vec{a}|=\sqrt{(-2)^{2}+(3)^{2}+(1)^{2}}=\sqrt{14}
$$

The direction cosines are

$$
\cos \alpha=\frac{a_{1}}{|\vec{a}|}=\frac{-2}{\sqrt{14}}, \quad \cos \beta=\frac{a_{2}}{|\vec{a}|}=\frac{3}{\sqrt{14}}, \quad \cos \gamma=\frac{a_{3}}{|\vec{a}|}=\frac{1}{\sqrt{14}}
$$

The direction angles are

$$
\begin{gathered}
\alpha=\arccos \left(\frac{-2}{\sqrt{14}}\right)=\pi-\arccos \frac{2}{\sqrt{14}} \approx 122.3^{\circ}, \quad \beta=\arccos \frac{3}{\sqrt{14}} \approx 36.7^{\circ}, \\
\gamma=\arccos \frac{1}{\sqrt{14}} \approx 74.5^{\circ}
\end{gathered}
$$

2. Find the scalar projection and vector projection of $\vec{b}=2 \vec{\imath}+3 \vec{\jmath}-\vec{k}$ onto $\vec{a}=\vec{\jmath}-2 \vec{k}$.

SOLUTION. The scalar projection of of \vec{b} onto \vec{a} is

$$
\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\frac{(2)(0)+(3)(1)+(-1)(-2)}{\sqrt{(1)^{2}+(-2)^{2}}}=\frac{5}{\sqrt{5}}=\sqrt{5}
$$

The vector projection of \vec{b} onto \vec{a} is

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}=\frac{5}{5}<0,1,-2>=<0,1,-2>
$$

3. Find two vectors orthogonal to both $\langle 2,1,-1\rangle$ and $<0,1,1\rangle$.

SOLUTION. Let $\vec{a}=<2,1,-1>$ and $\vec{b}=<0,1,1>$. Vectors $c=\vec{a} \times \vec{b}$ and $-\vec{c}$ are orthogonal to both \vec{a} and \vec{b}.

$$
\vec{c}=\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 & 1 & -1 \\
0 & 1 & 1
\end{array}\right|=\vec{\imath}\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right|-\vec{\jmath}\left|\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
2 & 1 \\
0 & 1
\end{array}\right|=2 \vec{\imath}-2 \vec{\jmath}+2 \vec{k}
$$

The vector orthogonal to both \vec{a} and \vec{b} is

$$
\vec{c}_{1}=<2,-2,2>
$$

The second unit vector orthogonal to both \vec{a} and \vec{b} is

$$
\vec{c}_{2}=-\vec{c}_{1}=<-2,2,-2>
$$

4. Find the volume of the parallelepiped determined by the vectors $\langle 1,-1,1\rangle,\langle 2,0,-1\rangle$, and $\langle 0,-1,3\rangle$.
SOLUTION. Let $\vec{a}=<1,-1,1>, \vec{b}=<2,0,-1>$, and $\vec{c}=<0,-1,3>$. Then the volume of the parallelopiped determined by \vec{a}, \vec{b}, and \vec{c} is $V=|\vec{a} \cdot(\vec{b} \times \vec{c})|$.

$$
\vec{b} \times \vec{c})=\left|\begin{array}{ccc}
1 & -1 & 1 \\
2 & 0 & -1 \\
0 & -1 & 3
\end{array}\right|=1\left|\begin{array}{cc}
0 & -1 \\
-1 & 3
\end{array}\right|-(-1)\left|\begin{array}{cc}
2 & 1 \\
0 & 3
\end{array}\right|+1\left|\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right|=-1+6-2=3
$$

Thus $V=3$.

