NAME (print): \qquad
No credit for unsupported answers will be given. No calculators. Clearly indicate your final answer

1. [3 pts.]
(a) Find symmetric equations for the line passing through the points $A(-1,3,2)$ and $B(2,3,-1)$.
SOLUTION. The vector parallel to the line is $\overrightarrow{A B}=<3,0,-3>$. Thus, the symmetric equations for the line are

$$
\frac{x+1}{3}=\frac{z-2}{-3}, \quad y=3
$$

or

$$
\frac{x-2}{3}=\frac{z+1}{-3}, \quad y=3
$$

(b) Find the equation of the plane passing through the point $P(-1,0,4)$ and parallel to the plane $x+2 y+5 z=3$.
SOLUTION. The vector orthogonal to the second plane is $\vec{n}=\langle 1,2,5\rangle$. Since the planes are parallel, they will have the same normal vector. Thus, the equation of the plane is

$$
1(x+1)+2(y-0)+5(z-4)=0 \text { or } x+2 y+5 z-19=0
$$

2. [3 pts.] Find the intersection of the lines
$L_{1}: \quad x=1+t, \quad y=2-t, \quad z=3 t$
$L_{2}: \quad x=2-s, \quad y=1+2 s, \quad z=3+s$
SOLUTION. For the lines to intersect we must be able to find one value for t and one value for s satisfying the following three equations:

$$
\begin{aligned}
& 1+t=2-s \\
& 2-t=1+2 s \\
& 3 t=3+s
\end{aligned}
$$

Solving the first two equations gives $s=0$, and $t=1$, and, checking, we see, that these values satisfy the third equation. Thus, the lines intersect when $t=1$ and $s=0$, or at the point $(2,1,3)$.
3. [4 pts.] Find parametric equations of the line of intersection of the planes $x+y-z=0$ and $2 x-5 y-z=1$.
SOLUTION. The direction vector for the line of intersection is $\vec{v}=\overrightarrow{n_{1}} \times \overrightarrow{n_{1}}$, where $\overrightarrow{n_{1}}=<1,1,-1>$ is the normal vector for the first plane and $\overrightarrow{n_{2}}=<2,-5,-1>$ is the normal vector for the second plane.

$$
\vec{v}=\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\vec{\imath}(-1-5)-\vec{\jmath}(-1+2)+\vec{k}(-5-2)=-6 \vec{\imath}-\vec{\jmath}-7 \vec{k} .
$$

To find a point on the line of intersection, set one of the variables equal to a constant, say $y=0$. Then the equations of the planes reduce to $x-z=0$ and $2 x-z=1$. Solving this two equations gives $x=z=1$. So a point on a line of intersection is $(1,0,1)$. The parametric equations for the line are

$$
\begin{aligned}
& x=1-6 t \\
& y=-t \\
& z=1-7 t
\end{aligned}
$$

