MATH 251, Section Thursday, Sept. 16, 2010	Quiz 3 (Sections 11.5, 11.6, 11.7 (Arc length)). Dr. M. Vorobets
NAME (print):	
No credit for unsupported answers will your final answer	l be given. No calculators. Clearly indicate
1. [3 pts.] Consider the quadric surface y the names of the curves) of this surface	$=4x^2+z^2$. Find the traces (write equations and se in the planes
(a) $y = 4$:	
(b) $x = 0$:	
(c) $z = 0$:	

3. [2 pts.] Find the limit

$$\lim_{t \to \infty} \left(e^{-t} \ \vec{i} + \frac{t-1}{t+1} \ \vec{\jmath} + \tan^{-1} t \ \vec{k} \right)$$

4. [3 pts.] Find the length of the curve given by the vector function

$$\vec{r}(t) = \cos^3 t \ \vec{i} + \sin^3 t \ \vec{j} + \cos(2t) \ \vec{k}, \quad 0 \le t \le \frac{\pi}{2}.$$