\qquad Quiz 6 (Sections 12.7, 12.8).
Thursday, Sept. 30, 2010
The quiz is due Tuesday, Oct. 5 at the beginning of class.
NAME (print):
No credit for unsupported answers will be given. Clearly indicate your final answer

1. [3 pts.] Find the local minimum and maximum, if any, of the function $f(x, y)=x^{2}+$ $x y+y^{2}-2 x-y$.
SOLUTION. We first locate the critical points:
$f_{x}(x, y)=2 x+y-2$
$f_{y}(x, y)=x+2 y-1$
Setting these derivatives equal to zero, we get the following system:
$\left\{\begin{array}{l}2 x+y-2=0 \\ x+2 y-1=0\end{array}\right.$
Substitute $y=2-2 x$ from the first equation into the second equation:

$$
\begin{aligned}
& x+2(2-2 x)-1=0 \\
& x+4-4 x-1=0 \\
& -3 x+3=0 \\
& x=1 \\
& y=2-2 x=2-(2)(1)=0
\end{aligned}
$$

The critical point is $(1,0)$.
Next we calculate the second partial derivatives:
$f_{x x}(x, y)=2, f_{x y}(x, y)=1, f_{y y}(x, y)=2$.
Then
$D(x, y)=\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=4-1=3>0$
Since $f_{x x}(x, y)=2>0$, the function has a local minimum at the point $(1,0), f(1,0)=-1$.
2. [3 pts.] Use Lagrange multipliers to find the maximum and minimum values of the function $f(x, y)=6-4 x-3 y$ subject to the constraint $x^{2}+y^{2}=1$.
SOLUTION. Let $g(x, y)=x^{2}+y^{2}$.
$\nabla f(x, y)=<-4,-3>, \nabla g(x, y)=<2 x, 2 y>$.
Using Lagrange multipliers, we solve the equations

$$
\begin{aligned}
& -4=\lambda(2 x) \\
& -3=\lambda(2 y) \\
& x^{2}+y^{2}=1
\end{aligned}
$$

From the first equation $x=-\frac{2}{\lambda}$, from the second equation $y=-\frac{3}{2 \lambda}$ Plugging the expressions for x and y into the third equation, gives

$$
\frac{4}{\lambda^{2}}+\frac{9}{4 \lambda^{2}}=1
$$

or $\lambda^{2}=\frac{25}{4}$, so $\lambda=5 / 2$ or $\lambda=-5 / 2$
When $\lambda=\frac{5}{2}$, then $x=-\frac{4}{5}, y=-\frac{3}{5}$, and $f(-4 / 5,-3 / 5)=11$
When $\lambda=-\frac{5}{2}$, then $x=\frac{4}{5}, y=\frac{3}{5}$, and $f(4 / 5,3 / 5)=1$
Thus, the minimum value is $f(4 / 5,3 / 5)=1$ and the maximum value $f(-4 / 5,-3 / 5)=11$
3. [4 pts.] Find the absolute maximum and minimum values of the function $f(x, y)=$ $x^{2}+y^{2}-x y+x+y$ if $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq 0, y \leq 0, x+y \geq-3\right\}$.
SOLUTION. The set D is bounded by lines $x=0, y=0$, and $x+y=-3$

First we find critical points for f :
$f_{x}(x, y)=2 x-y+1=0$
$f_{y}(x, y)=2 y-x+1=0$
so the only critical points is $(-1,-1)$.
$f(-1,-1)=-1$
Now we look at the values of f on the boundary of D.
If $x=0$, then $f(0, y)=y^{2}+y$
$f_{y}(0, y)=2 y+1=0$, so $y=-1 / 2$.
$f(0,-1 / 2)=-1 / 2$
If $y=0$, then $f(x, 0)=x^{2}+x, f_{x}(x, 0)=2 x+1=0$ and $x=-1 / 2$
$f(-1 / 2,0)=-1 / 2$
If $x+y=-3$, then $y=-3-x$, and $g(x)=f(x, y)=x^{2}+y^{2}-x y+x+y=$ $x^{2}+(-3-x)^{2}-x(-3-x)+x+(-x-3)=3 x^{2}+9 x+6$
$g^{\prime}(x)=6 x+9=0$, so $x=-3 / 2$ and $y=-3-(-3 / 2)=-3 / 2$
$f(-3 / 2,-3 / 2)=-3 / 4$
Finally we have to find the value of f at the points $(-3,0)$ and $(0,-3)$:
$f(-3,0)=6$
$f(0,-3)=6$
Thus, the absolute maximum value of the function is $f(-3,0)=f(0,-3)=6$ and the absolute minimum value is $f(-1,-1)=-1$.

