MATH 251, Section _____ Thursday, Sept. 30, 2010 Quiz 6 (Sections 12.7, 12.8). Dr. M. Vorobets

The quiz is due Tuesday, Oct. 5 at the beginning of class.

NAME (print):

No credit for unsupported answers will be given. Clearly indicate your final answer

1. [3 pts.] Find the local minimum and maximum, if any, of the function $f(x,y) = x^2 + xy + y^2 - 2x - y$.

SOLUTION. We first locate the critical points:

 $f_x(x,y) = 2x + y - 2$

 $f_y(x,y) = x + 2y - 1$

Setting these derivatives equal to zero, we get the following system:

$$\begin{cases} 2x + y - 2 = 0\\ x + 2y - 1 = 0 \end{cases}$$

Substitute $y = 2 - 2x$ from the first equation into the second equation:
 $x + 2(2 - 2x) - 1 = 0$
 $x + 4 - 4x - 1 = 0$
 $-3x + 3 = 0$
 $x = 1$
 $y = 2 - 2x = 2 - (2)(1) = 0$

The critical point is (1,0).

Next we calculate the second partial derivatives:

$$f_{xx}(x,y) = 2, f_{xy}(x,y) = 1, f_{yy}(x,y) = 2.$$

Then

$$D(x,y) = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 4 - 1 = 3 > 0$$

Since $f_{xx}(x, y) = 2 > 0$, the function has a local minimum at the point (1, 0), f(1, 0) = -1.

2. [3 pts.] Use Lagrange multipliers to find the maximum and minimum values of the function f(x, y) = 6 - 4x - 3y subject to the constraint $x^2 + y^2 = 1$.

SOLUTION. Let $g(x, y) = x^2 + y^2$.

$$\nabla f(x,y) = \langle -4, -3 \rangle, \ \nabla g(x,y) = \langle 2x, 2y \rangle.$$

Using Lagrange multipliers, we solve the equations

$$-4 = \lambda(2x)$$

$$-3 = \lambda(2y)$$

$$x^2 + y^2 = 1$$

From the first equation $x = -\frac{2}{\lambda}$, from the second equation $y = -\frac{3}{2\lambda}$ Plugging the expressions for x and y into the third equation, gives

$$\frac{4}{\lambda^2} + \frac{9}{4\lambda^2} = 1$$

or
$$\lambda^2 = \frac{25}{4}$$
, so $\lambda = 5/2$ or $\lambda = -5/2$
When $\lambda = \frac{5}{2}$, then $x = -\frac{4}{5}$, $y = -\frac{3}{5}$, and $f(-4/5, -3/5) = 11$
When $\lambda = -\frac{5}{2}$, then $x = \frac{4}{5}$, $y = \frac{3}{5}$, and $f(4/5, 3/5) = 1$
Thus, the minimum value is $f(4/5, 3/5) = 1$ and the maximum value $f(-4/5, -3/5) = 11$

3. [4 pts.] Find the absolute maximum and minimum values of the function f(x,y) = $x^{2} + y^{2} - xy + x + y \text{ if } D = \{(x, y) \in \mathbb{R}^{2} | x \le 0, y \le 0, x + y \ge -3\}.$

SOLUTION. The set D is bounded by lines x = 0, y = 0, and x + y = -3

First we find critical points for f: $f_x(x, y) = 2x - y + 1 = 0$ $f_{y}(x, y) = 2y - x + 1 = 0$ so the only critical points is (-1, -1). f(-1, -1) = -1Now we look at the values of f on the boundary of D. If x = 0, then $f(0, y) = y^2 + y$ $f_y(0, y) = 2y + 1 = 0$, so y = -1/2. f(0, -1/2) = -1/2If y = 0, then $f(x, 0) = x^2 + x$, $f_x(x, 0) = 2x + 1 = 0$ and x = -1/2f(-1/2,0) = -1/2If x + y = -3, then y = -3 - x, and $g(x) = f(x, y) = x^2 + y^2 - xy + x + y = x^2 + (-3 - x)^2 - x(-3 - x) + x + (-x - 3) = 3x^2 + 9x + 6$

$$g'(x) = 6x + 9 = 0$$
, so $x = -3/2$ and $y = -3 - (-3/2) = -3/2$
 $f(-3/2, -3/2) = -3/4$

Finally we have to find the value of f at the points (-3, 0) and (0, -3):

$$f(-3,0) = 6$$

f(0, -3) = 6

Thus, the absolute maximum value of the function is f(-3,0) = f(0,-3) = 6 and the absolute minimum value is f(-1,-1) = -1.