Practice problems for Exam 2.

- 1. Sketch the region of integration and change the order of integration for $\int_0^1 \int_{y^2}^{2-y} f(x,y) dx dy$.
- 2. Evaluate $\iint_D (xy+2x+3y) dA$, where D is the region in the first quadrant bounded by $x = 1-y^2$, x = 0, y = 0.
- 3. Sketch the region whose area is given by the integral $\int_0^{\pi} \int_1^{1+\sin\theta} r dr d\theta$.
- 4. Find the area of the region enclosed by the lemniscate $r^2 = 4\cos(2\theta)$.
- 5. Find the mass and center of mass of a lamina that occupies the region D bounded by the lines $y = 0, y = \sqrt{3}x$ and the circle $x^2 + y^2 = 9$ that lies in the first quadrant if the density function is $\rho(x, y) = xy^2$.
- 6. Evaluate $\iiint_E (x+2y)dV$ if E is bounded by the cylinder $x = y^2$ and the planes z = 0 and x + z = 1.
- 7. Sketch the solid whose volume is given by the integral $\int_1^3 \int_0^{\pi/2} \int_r^3 r dz d\theta dr$
- 8. Evaluate $\iiint_E \sqrt{x^2 + y^2} dV$, where E is the solid bounded by the paraboloid $z = 9 x^2 y^2$ and the xy-plane.
- 9. Sketch the solid whose volume is given by the integral $\int_0^{2\pi} \int_0^{\pi/6} \int_1^3 \rho^2 \sin \varphi d\rho d\varphi d\theta$
- 10. Evaluate $\iiint_E x e^{(x^2+y^2+z^2)^2} dV$ if the *E* is the solid that lies between the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=4$ in the first octant.
- 11. Find the gradient vector field of the function $f(x, y, z) = xy^2 yz^3$.
- 12. Evaluate the line integral $\int_C x^3 z ds$ if C is given by $x = 2 \sin t$, y = t, $z = 2 \cos t$, $0 \le t \le \pi/2$.
- 13. Evaluate $\int_C y dx + z dy + x dz$ if C consists of the line segments from (0,0,0) to (1,1,2) and from (1,1,2) to (3,1,4).
- 14. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = x^2 y \vec{i} + e^y \vec{j}$ and C is given by $\vec{r}(t) = t^2 \vec{i} t^3 \vec{j}, 0 \le t \le 1$.
- 15. Show that $\vec{F}(x,y) = (2x+y^2+3x^2y)\vec{\imath} + (2xy+x^3+3y^2)\vec{\jmath}$ is conservative vector field. Use this fact to evaluate $\int_C \vec{F} \cdot d\vec{r}$ if C is the arc of the curve $y = x \sin x$ from (0,0) to $(\pi, 0)$.
- 16. Show that $\vec{F}(x, y, z) = yz(2x+y)\vec{i} + xz(x+2y)\vec{j} + xy(x+y)\vec{k}$ is conservative vector field. Use this fact to evaluate $\int_C \vec{F} \cdot d\vec{r}$ if C is given by $\vec{r}(t) = (1+t)\vec{i} + (1+2t^2)\vec{j} + (1+3t^3)\vec{k}, 0 \le t \le 1$.
- 17. Use Green's Theorem to evaluate $\int_C x^2 y dx xy^2 dy$ where C is the circle $x^2 + y^2 = 4$ with counterclockwise orientation.
- 18. Find curl \vec{F} and div \vec{F} if $\vec{F} = x^2 z \vec{\imath} + 2x \sin y \vec{\jmath} + 2z \cos y \vec{k}$.
- 19. Show that there is no vector field \vec{G} such that $\operatorname{curl} \vec{G} = 2x\vec{i} + 3yz\vec{j} xz^2\vec{k}$.