Practice problems for Exam 2.

1. Sketch the region of integration and change the order of integration for $\int_{0}^{1} \int_{y^{2}}^{2-y} f(x, y) d x d y$.
2. Evaluate $\iint_{D}(x y+2 x+3 y) d A$, where D is the region in the first quadrant bounded by $x=1-y^{2}$, $x=0, y=0$.
3. Sketch the region whose area is given by the integral $\int_{0}^{\pi} \int_{1}^{1+\sin \theta} r d r d \theta$.
4. Find the area of the region enclosed by the lemniscate $r^{2}=4 \cos (2 \theta)$.
5. Find the mass and center of mass of a lamina that occupies the region D bounded by the lines $y=0, y=\sqrt{3} x$ and the circle $x^{2}+y^{2}=9$ that lies in the first quadrant if the density function is $\rho(x, y)=x y^{2}$.
6. Evaluate $\iiint_{E}(x+2 y) d V$ if E is bounded by the cylinder $x=y^{2}$ and the planes $z=0$ and $x+z=1$.
7. Sketch the solid whose volume is given by the integral $\int_{1}^{3} \int_{0}^{\pi / 2} \int_{r}^{3} r d z d \theta d r$
8. Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}} d V$, where E is the solid bounded by the paraboloid $z=9-x^{2}-y^{2}$ and the $x y$-plane.
9. Sketch the solid whose volume is given by the integral $\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{1}^{3} \rho^{2} \sin \varphi d \rho d \varphi d \theta$
10. Evaluate $\iiint_{E} x e^{\left(x^{2}+y^{2}+z^{2}\right)^{2}} d V$ if the E is the solid that lies between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ in the first octant.
11. Find the gradient vector field of the function $f(x, y, z)=x y^{2}-y z^{3}$.
12. Evaluate the line integral $\int_{C} x^{3} z d s$ if C is given by $x=2 \sin t, y=t, z=2 \cos t, 0 \leq t \leq \pi / 2$.
13. Evaluate $\int_{C} y d x+z d y+x d z$ if C consists of the line segments from $(0,0,0)$ to $(1,1,2)$ and from $(1,1,2)$ to $(3,1,4)$.
14. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=x^{2} y \vec{\imath}+e^{y} \vec{\jmath}$ and C is given by $\vec{r}(t)=t^{2} \vec{\imath}-t^{3} \vec{\jmath}, 0 \leq t \leq 1$.
15. Show that $\vec{F}(x, y)=\left(2 x+y^{2}+3 x^{2} y\right) \vec{\imath}+\left(2 x y+x^{3}+3 y^{2}\right) \vec{\jmath}$ is conservative vector field. Use this fact to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ if C is the arc of the curve $y=x \sin x$ from $(0,0)$ to $(\pi, 0)$.
16. Show that $\vec{F}(x, y, z)=y z(2 x+y) \vec{\imath}+x z(x+2 y) \vec{\jmath}+x y(x+y) \vec{k}$ is conservative vector field. Use this fact to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ if C is given by $\vec{r}(t)=(1+t) \vec{\imath}+\left(1+2 t^{2}\right) \vec{\jmath}+\left(1+3 t^{3}\right) \vec{k}, 0 \leq t \leq 1$.
17. Use Green's Theorem to evaluate $\int_{C} x^{2} y d x-x y^{2} d y$ where C is the circle $x^{2}+y^{2}=4$ with counterclockwise orientation.
18. Find curl \vec{F} and div \vec{F} if $\vec{F}=x^{2} z \vec{\imath}+2 x \sin y \vec{\jmath}+2 z \cos y \vec{k}$.
19. Show that there is no vector field \vec{G} such that curl $\vec{G}=2 x \vec{\imath}+3 y z \vec{\jmath}-x z^{2} \vec{k}$.
