Chapter 11. Three-dimensional analytic geometry and vectors Section 11.2 Vectors and the dot product in three dimensions

Geometrically, a three-dimensional vector can be considered as an arrow with both a length and direction. An arrow is a directed line segment with a starting point and an ending point. Algebraically, a **tree-dimensional vector** is an ordered triple $\vec{a} = \langle a_1, a_2, a_3 \rangle$ of real numbers. The numbers a_1 , a_2 , and a_3 are called the **components** of \vec{a} .

A representation of the vector $\vec{a} = \langle a_1, a_2, a_3 \rangle$ is a directed line segment \vec{AB} from any point A(x, y, z) to the point $B(x + a_1, y + a_2, z + a_3)$.

A particular representation of $\vec{a} = \langle a_1, a_2, a_3 \rangle$ is the directed line segment \vec{OP} from the origin to the point $P(a_1, a_2, a_3)$, and $\vec{a} = \langle a_1, a_2, a_3 \rangle$ is called the **position vector** of the point $P(a_1, a_2, a_3)$.

Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, then $|\vec{AB}| = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$.

Example 1. Find a vector \vec{a} with representation given by the directed line segment \vec{AB} , where A(1, -2, 0), B(1, -2, 3). Draw \vec{AB} and the equivalent representation starting at the origin.

The magnitude (length) $|\vec{a}|$ of \vec{a} is the length of any its representation.

The length of $\vec{a} = \langle a_1, a_2, a_3 \rangle$ is $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

The only vector with length 0 is the **zero vector** $\vec{0} = < 0, 0, 0 >$. This vector is the only vector with no specific direction.

Vector addition If $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then the vector $\vec{a} + \vec{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$

Triangle Law

Parallelogram Law

Multiplication of a vector by a scalar If c is a scalar and $\vec{a} = \langle a_1, a_2, a_3 \rangle$, then the vector $c\vec{a} = \langle ca_1, ca_2, ca_3 \rangle$.

Two vectors \vec{a} and \vec{b} are called **parallel** if $\vec{b} = c\vec{a}$ for some scalar c. If $\vec{a} = \langle a_1, a_2, a_3 \rangle$, $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then \vec{a} and \vec{b} are parallel if and only if $\boxed{\frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3}}$. By the **difference** of two vectors, we mean $\boxed{\vec{a} - \vec{b} = \vec{a} + (-\vec{b}) = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle}$.

Example 2. Find $|2\vec{a} - 5\vec{b}|$ if $\vec{a} = <1, -3, 2>, \vec{b} = <2, 1, -1>.$

Properties of vectors If \vec{a} , \vec{b} , and \vec{c} are vectors and k and m are scalars, then 1. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ 5. $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$ 2. $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ 6. $(k + m)\vec{a} = k\vec{a} + m\vec{a}$ 3. $\vec{a} + \vec{0} = \vec{a}$ 7. $(km)\vec{a} = k(m\vec{a})$ 4. $\vec{a} + (-\vec{a}) = \vec{0}$ 8. $1\vec{a} = \vec{a}$

A unit vector is a vector whose length is 1.

A vector $\vec{u} = \frac{1}{|\vec{a}|}\vec{a} = \left\langle \frac{a_1}{|\vec{a}|}, \frac{a_2}{|\vec{a}|}, \frac{a_3}{|\vec{a}|} \right\rangle$ is a unit vector that has the same direction as $\vec{a} = \langle a_1, a_2, a_3 \rangle$.

Example 3. Find the unit vector in the direction of the vector $\vec{i} - 2\vec{j} + 2\vec{k}$.

Definition. The **dot** or **scalar product** of two nonzero vectors \vec{a} and \vec{b} is the number $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ where θ is the angle between \vec{a} and \vec{b} , $0 \le \theta \le \pi$. If either \vec{a} or \vec{b} is $\vec{0}$, we define $\vec{a} \cdot \vec{b} = 0$.

If
$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$
 and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ and $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
Example 4. Find the angle between vectors $\vec{a} = 6\vec{i} - 2\vec{j} - 3\vec{k}$ and $\vec{b} = \vec{i} + \vec{j} + \vec{k}$.

Two nonzero vectors \vec{a} and \vec{b} are called **perpendicular** or **orthogonal** if the angle between them is $\pi/2$.

Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b} = 0$.

Example 5. Find the values of x such that the vectors $\vec{a} = \langle x, 1, 2 \rangle$ and $\vec{b} = \langle 3, 4, x \rangle$ are orthogonal.

Direction angles and direction cosines. The direction angles of a nonzero vector \vec{a} are the angles α , β , and γ in the interval $[0, \pi]$ that \vec{a} makes with the positive x-, y-, and z- axes. The cosines of these direction angles, $\cos \alpha$, $\cos \beta$, and $\cos \gamma$, are called the **direction** cosines of the vector \vec{a} .

We can write

$$\vec{a} = < a_1, a_2, a_3 > = < |\vec{a}| \cos \alpha, |\vec{a}| \cos \beta, |\vec{a}| \cos \gamma > = |\vec{a}| < \cos \alpha, \cos \beta, \cos \gamma > = |\vec{a}| < \cos \alpha, \cos \beta, \cos \gamma > = |\vec{a}| < \cos \alpha, \cos \beta, \cos \gamma > = |\vec{a}| < \cos \alpha, \cos \beta, \cos \gamma > = |\vec{a}| < \cos \alpha, \cos \beta, \cos \gamma > = |\vec{a}| < \cos \alpha, \cos \beta, \cos \gamma > = |\vec{a}| < \cos \alpha, \cos \beta, \cos \gamma > = |\vec{a}| < \cos \alpha, \cos \beta, \cos \gamma > = |\vec{a}| < \cos \alpha, \cos \beta, \cos \gamma > = |\vec{a}| < \cos \alpha, \cos \beta, \cos \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}| < \cos \alpha, \sin \beta, \sin \gamma > = |\vec{a}$$

Therefore

$$\frac{1}{|\vec{a}|}\vec{a} = <\cos\alpha, \cos\beta, \cos\gamma >$$

which says that the direction cosines of \vec{a} are the components of the unit vector in the direction of \vec{a} .

Example 6. Find the direction cosines of the vector $\langle -4, -1, 2 \rangle$.

 $\vec{PS} = \text{proj}_{\vec{a}}\vec{b}$ is called the vector projection of \vec{b} onto \vec{a} . $|\vec{PS}| = \text{comp}_{\vec{a}}\vec{b}$ is called the scalar projection of \vec{b} onto \vec{a} or the component of \vec{b} along \vec{a} . The scalar projection of \vec{b} onto \vec{a} is the length of the vector projection of \vec{b} onto \vec{a} if $0 \le \theta < \pi/2$ and is negative if $\pi/2 \le \theta < \pi$.

 $\boxed{\operatorname{comp}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}} \operatorname{proj}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2}\vec{a} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2} < a_1, a_2, a_3 >$

Example 7. Find the scalar and vector projections of $\vec{b} = <4, 2, 0 >$ onto $\vec{a} = <1, 2, 3 >.$