Chapter 11. Three-dimensional analytic geometry and vectors Section 11.2 Vectors and the dot product in three dimensions

Geometrically, a three-dimensional vector can be considered as an arrow with both a length and direction. An arrow is a directed line segment with a starting point and an ending point. Algebraically, a tree-dimensional vector is an ordered triple $\vec{a}=<a_{1}, a_{2}, a_{3}>$ of real numbers. The numbers a_{1}, a_{2}, and a_{3} are called the components of \vec{a}.

A representation of the vector $\vec{a}=<a_{1}, a_{2}, a_{3}>$ is a directed line segment $\overrightarrow{A B}$ from any point $A(x, y, z)$ to the point $B\left(x+a_{1}, y+a_{2}, z+a_{3}\right)$.

A particular representation of $\vec{a}=<a_{1}, a_{2}, a_{3}>$ is the directed line segment $\overrightarrow{O P}$ from the origin to the point $P\left(a_{1}, a_{2}, a_{3}\right)$, and $\vec{a}=<a_{1}, a_{2}, a_{3}>$ is called the position vector of the point $P\left(a_{1}, a_{2}, a_{3}\right)$.

Given the points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$, then $\overrightarrow{A B}=<x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}>$.
Example 1. Find a vector \vec{a} with representation given by the directed line segment $\overrightarrow{A B}$, where $A(1,-2,0), B(1,-2,3)$. Draw $\overrightarrow{A B}$ and the equivalent representation starting at the origin.

The magnitude (length) $|\vec{a}|$ of \vec{a} is the length of any its representation.
The length of $\vec{a}=<a_{1}, a_{2}, a_{3}>$ is $|\vec{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$
The only vector with length 0 is the zero vector $\overrightarrow{0}=<0,0,0>$. This vector is the only vector with no specific direction.

Vector addition If $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$, then the vector $\vec{a}+\vec{b}=<$ $a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}>$

Triangle Law

Parallelogram Law

Multiplication of a vector by a scalar If c is a scalar and $\vec{a}=<a_{1}, a_{2}, a_{3}>$, then the vector $c \vec{a}=<c a_{1}, c a_{2}, c a_{3}>$.

Two vectors \vec{a} and \vec{b} are called parallel if $\vec{b}=c \vec{a}$ for some scalar c. If $\vec{a}=<a_{1}, a_{2}, a_{3}>$, $\vec{b}=<b_{1}, b_{2}, b_{3}>$, then \vec{a} and \vec{b} are parallel if and only if $\frac{b_{1}}{a_{1}}=\frac{b_{2}}{a_{2}}=\frac{b_{3}}{a_{3}}$.

By the difference of two vectors, we mean $\vec{a}-\vec{b}=\vec{a}+(-\vec{b})=<a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}>$

Example 2. Find $|2 \vec{a}-5 \vec{b}|$ if $\vec{a}=<1,-3,2>, \vec{b}=<2,1,-1>$.

Properties of vectors If \vec{a}, \vec{b}, and \vec{c} are vectors and k and m are scalars, then

1. $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
2. $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}$
3. $\vec{a}+(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c}$
4. $(k+m) \vec{a}=k \vec{a}+m \vec{a}$
5. $\vec{a}+\overrightarrow{0}=\vec{a}$
6. $(k m) \vec{a}=k(m \vec{a})$
7. $\vec{a}+(-\vec{a})=\overrightarrow{0}$
8. $1 \vec{a}=\vec{a}$

Let $\vec{\imath}=<1,0,0>$ and $\vec{\jmath}=<0,1,0>, \vec{k}=<0,0,1>,|\vec{\imath}|=|\vec{\jmath}|=|\vec{k}|=1$.
$\vec{a}=<a_{1}, a_{2}, a_{3}>=a_{1} \vec{\imath}+a_{2} \vec{\jmath}+a_{3} \vec{k}$

A unit vector is a vector whose length is 1 .
A vector $\vec{u}=\frac{1}{|\vec{a}|} \vec{a}=\left\langle\frac{a_{1}}{|\vec{a}|}, \frac{a_{2}}{|\vec{a}|}, \frac{a_{3}}{|\vec{a}|}\right\rangle$ is a unit vector that has the same direction as $\vec{a}=<$ $a_{1}, a_{2}, a_{3}>$.

Example 3. Find the unit vector in the direction of the vector $\vec{\imath}-2 \vec{\jmath}+2 \vec{k}$.

Definition. The dot or scalar product of two nonzero vectors \vec{a} and \vec{b} is the number $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$ where θ is the angle between \vec{a} and $\vec{b}, 0 \leq \theta \leq \pi$. If either \vec{a} or \vec{b} is $\overrightarrow{0}$, we define $\vec{a} \cdot \vec{b}=0$.

If $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$, then $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$ and $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
Example 4. Find the angle between vectors $\vec{a}=6 \vec{\imath}-2 \vec{\jmath}-3 \vec{k}$ and $\vec{b}=\vec{\imath}+\vec{\jmath}+\vec{k}$.

Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is $\pi / 2$.

Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b}=0$.
Example 5. Find the values of x such that the vectors $\vec{a}=<x, 1,2>$ and $\vec{b}=<3,4, x>$ are orthogonal.

Direction angles and direction cosines. The direction angles of a nonzero vector \vec{a} are the angles α, β, and γ in the interval $[0, \pi]$ that \vec{a} makes with the positive $x-, y-$, and $z-$ axes. The cosines of these direction angles, $\cos \alpha, \cos \beta$, and $\cos \gamma$, are called the direction cosines of the vector \vec{a}.

We can write

$$
\vec{a}=<a_{1}, a_{2}, a_{3}>=<|\vec{a}| \cos \alpha,|\vec{a}| \cos \beta,|\vec{a}| \cos \gamma>=|\vec{a}|<\cos \alpha, \cos \beta, \cos \gamma>
$$

Therefore

$$
\frac{1}{|\vec{a}|} \vec{a}=<\cos \alpha, \cos \beta, \cos \gamma>
$$

which says that the direction cosines of \vec{a} are the components of the unit vector in the direction of \vec{a}.

Example 6. Find the direction cosines of the vector $\langle-4,-1,2\rangle$.

$\overrightarrow{P S}=\operatorname{proj}_{\vec{a}} \vec{b}$ is called the vector projection of \vec{b} onto \vec{a}.
$|\overrightarrow{P S}|=\operatorname{comp}_{\vec{a}} \vec{b}$ is called the scalar projection of \vec{b} onto \vec{a} or the component of \vec{b} along \vec{a}. The scalar projection of \vec{b} onto \vec{a} is the length of the vector projection of \vec{b} onto \vec{a} if $0 \leq \theta<\pi / 2$ and is negative if $\pi / 2 \leq \theta<\pi$.
$\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}<a_{1}, a_{2}, a_{3}>$
Example 7. Find the scalar and vector projections of $\vec{b}=<4,2,0>$ onto $\vec{a}=<1,2,3>$.

