Chapter 11. Three dimensional analytic geometry and vectors. Section 11.3 The cross product.

If we tighten a bolt by applying a force to a wrench, we produce a turning effect called a torque $\vec{\tau}$ that acts along the axis of the bolt to move it forward. The magnitude of the torque depends on two things:

- The distance from the axis of the bolt to the point where the force is applied. This is $|\vec{r}|$, the length of the position vector \vec{r}.
- The scalar component of the force \vec{F} in the direction perpendicular to \vec{r}. This is the only component that can cause a rotation and it is

$$
|\vec{F}| \sin \theta
$$

where θ is an angle between the vectors \vec{r} and \vec{F}.
We define the magnitude of the torque to be the product of these two factors:

$$
|\tau|=|\vec{r}||\vec{F}| \sin \theta
$$

If \vec{n} is a unit vector that points in the direction in which a right-threaded bolt moves, we define the torque to be the vector

$$
\vec{\tau}=(|\vec{r}||\vec{F}| \sin \theta) \vec{n} .
$$

We denote this torque vector by $\vec{\tau}=\vec{r} \times \vec{F}$ and we call it the cross product or vector product of \vec{r} and \vec{F}.

Definition. If \vec{a} and \vec{b} are nonzero three-dimensional vectors, the cross product of \vec{a} and \vec{b} is the vector

$$
\vec{a} \times \vec{b}=(|\vec{a}||\vec{b}| \sin \theta) \vec{n}
$$

where θ is the angle between \vec{a} and \vec{b} and \vec{n} is a unit vector perpendicular to both \vec{a} and \vec{b} and whose direction is given by the right-hand rule: If the fingers of your hand curl through the angle θ from \vec{a} to \vec{b}, then your thumb points in the direction of \vec{n}.

If either \vec{a} or \vec{b} is $\overrightarrow{0}$, then we define $\vec{a} \times \vec{b}$ to be $\overrightarrow{0}$.
$\vec{a} \times \vec{b}$ is orthogonal to both \vec{a} and \vec{b}.
Two nonzero vectors \vec{a} and \vec{b} are parallel if and only if $\vec{a} \times \vec{b}=\overrightarrow{0}$.
Properties of the cross product. If \vec{a}, \vec{b}, and \vec{c} are vectors and k is a scalar, then

1. $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
2. $(k \vec{a}) \times \vec{b}=k(\vec{a} \times \vec{b})=\vec{a} \times(k \vec{b})$
3. $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
4. $(\vec{a}+\vec{b}) \times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \times \vec{c}$

The length of the cross product $\vec{a} \times \vec{b}$ is equal to the area of the parallelogram determined by \vec{a} and \vec{b}.

The cross product in component form.
A determinant of order 2 is defined by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

A determinant of order $\mathbf{3}$ can be defined in terms of second-order determinants as follows:

$$
\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{cc}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{cc}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

The cross product of a $\vec{a}=a_{1} \vec{\imath}+a_{2} \vec{\jmath}+a_{3} \vec{k}$ and $\vec{b}=b_{1} \vec{\imath}+b_{2} \vec{\jmath}+b_{3} \vec{k}$ is

$$
\begin{gathered}
\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\vec{\imath}\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\vec{\jmath}\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|= \\
\quad\left(a_{2} b_{3}-a_{3} b_{2}\right) \vec{\imath}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \vec{\jmath}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \vec{k}
\end{gathered}
$$

Example 1. If $\vec{a}=<-2,3,4>$ and $\vec{b}=<3,0,1>$, find $\vec{a} \times \vec{b}$.

Example 2. Find the area of the triangle with vertices $A(1,2,3), B(2,-1,1), C(0,1,-1)$.

Example 3. Find two unit vectors orthogonal to both $\vec{\imath}+\vec{\jmath}$ and $\vec{\imath}-\vec{\jmath}+\vec{k}$.

Triple products

The product $\vec{a} \cdot(\vec{b} \times \vec{c})$ is called the scalar triple product of the vectors \vec{a}, \vec{b}, and \vec{c}.
The volume of the parallelepiped determined by the vectors \vec{a}, \vec{b}, and \vec{c} is the magnitude of their scalar triple product:

$$
\begin{gathered}
V=|\vec{a} \cdot(\vec{b} \times \vec{c})| . \\
\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \cdot \vec{c}
\end{gathered}
$$

Suppose that \vec{a}, \vec{b}, and \vec{c} are given in component form:

$$
\vec{a}=<a_{1}, a_{2}, a_{3}>, \quad \vec{b}=<b_{1}, b_{2}, b_{3}>, \quad \vec{c}=<c_{1}, c_{2}, c_{3}>.
$$

Then

$$
\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Example 4. Find the volume of the parallelepiped determined by vectors $\vec{a}=2 \vec{\imath}+3 \vec{\jmath}-2 \vec{k}$, $\vec{b}=\vec{\imath}-\vec{\jmath}$, and $\vec{c}=2 \vec{\imath}+3 \vec{k}$.

Example 5. Use the scalar triple product to verify that the vectors $\vec{a}=2 \vec{\imath}+3 \vec{\jmath}+\vec{k}$, $\vec{b}=\vec{\imath}-\vec{\jmath}$, and $\vec{c}=7 \vec{\imath}+3 \vec{\imath}+2 \vec{k}$ are complanar; that is, they lie in the same plane.

The product $\vec{a} \times(\vec{b} \times \vec{c})$ is called the vector triple product of the vectors \vec{a}, \vec{b}, and \vec{c}.

$$
\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}
$$

