Chapter 11. Three dimensional analytic geometry and vectors. Section 11.4 Equations of lines and planes.

A line L in 3D space is determined when we know a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on L and the direction of L. Let \vec{v} be a vector parallel to $L, P(x, y, z)$ be an arbitrary point on L and $\overrightarrow{r_{0}}$ and \vec{r} be position vectors of P_{0} and P.

$\vec{r}=\overrightarrow{r_{0}}+\overrightarrow{P_{0} P}$. Since $\overrightarrow{P_{0} P}$ is parallel to \vec{v}, there is a scalar t such that $\overrightarrow{P_{0} P}=t \vec{v}$. Thus a vector equation of L is

$$
\vec{r}=\overrightarrow{r_{0}}+t \vec{v} .
$$

Each value of the parameter t gives the position vector \vec{r} of a point on L.
If $\overrightarrow{r_{0}}=<x_{0}, y_{0}, z_{0}>, \vec{r}=<x, y, z>$, and $\vec{v}=<a, b, c>$, then

$$
<x, y, z>=<x_{0}+t a, y_{0}+t b, z_{0}+t c>
$$

or

$$
x=x_{0}+t a, \quad y=y_{0}+t b, \quad z=z_{0}+t c
$$

where $t \in \mathbb{R}$. These equations are called parametric equations of the line L through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the vector $\vec{v}=<a, b, c>$.

If a vector $\vec{v}=<a, b, c>$ is used to describe the direction of a line L, then the numbers a, b, and c are called direction numbers of L.

Example 1. Find the vector equation and parametric equations for the line passing through the point $P(1,-1,-2)$ and parallel to the vector $\vec{v}=3 \vec{\imath}-2 \vec{\jmath}+\vec{k}$.

Since vectors $\vec{v}=<a, b, c>$ and $\overrightarrow{P_{0} P}=<x-x_{0}, y-y_{0}, z-z_{0}>$ are parallel, then

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

These equations are called symmetric equations of L. If one of a, b, or c is 0 , we can still write symmetric equations. For instance, if $c=0$, then the symmetric equations of L are

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}, \quad z=z_{0} .
$$

This means that L lies in the plane $z=z_{0}$.
Example 2. Find symmetric equations for the line passing through the given points: (a) $(2,-6,1),(1,0,-2)$
(b) $(-1,2,-4),(-1,-3,2)$

Example 3. Find symmetric equations for the line that passes through the point $(0,2,-1)$ and is parallel to the line with parametric equations $x=1+2 t, y=3 t$, and $z=5-7 t$.

Example 4. Determine whether the lines L_{1} and L_{2} are parallel, skew (do not intersect and are not parallel), or intersecting. If they intersect, find the point of intersection.
(a) $L_{1}: \frac{x-4}{2}=\frac{y+5}{4}=\frac{z-1}{-3}, L_{2}: \frac{x-2}{1}=\frac{y+1}{3}=\frac{z}{3}$
(b) $L_{1}: \frac{x-1}{2}=\frac{y}{1}=\frac{z-1}{4}, L_{2}: \frac{x}{1}=\frac{y+2}{2}=\frac{z+2}{3}$
(c) $L_{1}: x=-6 t, y=1+9 t, z=-3 t$, $L_{2}: x=1+2 s, y=4-3 s, z=s$.

A plane in space is determined by a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ in the plane and a vector \vec{n} that is orthogonal to the plane. n is called a normal vector. Let $P(x, y, z)$ be an arbitrary point in the plane and \vec{r} and $\overrightarrow{r_{0}}$ be the position vectors of P and P_{0}.

$\overrightarrow{P_{0} P}=\vec{r}-\overrightarrow{r_{0}}$. The normal vector \vec{n} is orthogonal to every vector in the given plane, in particular, \vec{n} is orthogonal to $\overrightarrow{P_{0} P}$.

$$
\vec{n} \cdot\left(\vec{r}-\overrightarrow{r_{0}}\right)=0 \quad \text { or } \quad \vec{n} \cdot \vec{r}=\vec{n} \cdot \overrightarrow{r_{0}}
$$

Either of the two equations is called a vector equation of the plane.
Let $\vec{n}=<a, b, c>, \overrightarrow{r_{0}}=<x_{0}, y_{0}, z_{0}>$, and $\vec{r}=<x, y, z>$, then

$$
\vec{v} \cdot \vec{r}-\overrightarrow{r_{0}}=a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)
$$

so we can rewrite the vector equation in the following way:

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

This equation is called the scalar equation of the plane through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\vec{n}=<a, b, c>$.

By collecting terms in a scalar equation of a plane, we can rewrite the equation as

$$
a x+b y+c z+d=0,
$$

where $d=-a x_{0}-b y_{0}-c z_{0}$.
Example 5. Find the equation of the plane through the point $P_{0}(-5,1,2)$ with the normal vector $\vec{n}=<3,-3,-1>$.

Example 6. Find the equation of the plane passing through the points $(-1,1,-1)$, $(1,-1,2),(4,0,3)$.

Example 7. Find an equation of the plane that passes through the point $(1,6,-4)$ and contains the line $x=1+2 t, y=2-3 t, z=3-t$.

Two planes are parallel if their normal vectors are parallel. If two planes are not parallel, then they intersect in a straight lineand the angle between the two planes is defined as the acute angle between their normal vectors.

Example 8. (a) Find the angle between the planes $x-2 y+z=1$ and $2 x+y+z=1$.
(b)Find symmetric equation for the line of intersection of the planes.

Problem. Find a formula for the distance D from a point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+d=0$.

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Example 9. Find the distance between the parallel planes $x+2 y-z=-1$ and $3 x+6 y-3 z=4$.

