Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces.

Curves in \mathbb{R}^2 : ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

parabola $y = ax^2$ or $x = by^2$

A **quadric surface** is the graph of a second degree equation in three variables. The most general such equation is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,$$

where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms

$$Ax^{2} + By^{2} + Cz^{2} + J = 0$$
 or $Ax^{2} + By^{2} + Iz = 0$

In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called **traces** of the surface.

Ellipsoids The quadric surface with equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

is called an ellipsoid because all of its traces are ellipses.

The six intercepts of the ellipsoid are $(\pm a, 0, 0)$, $(0, \pm b, 0)$, and $(0, 0, \pm c)$ and the ellipsoid lies in the box

 $|x| \le a, \quad |y| \le b, \quad |z| \le c$

Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane.

Example 1. Find the traces of the surface

$$4x^2 + 9y^2 + 36z^2 = 36$$

in the planes x = k, y = k, and z = k. Identify the surface and sketch it.

Hyperboloids Hyperboloid of one sheet. The quadric surface with equations

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

2. $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
3. $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

are called **hyperbolids of one sheet** since two of its traces are hyperbolas and one is an ellipse, and its surface consists of just one piece.

Example 2. Find the traces of the surface

$$x^2 - y^2 + z^2 = 1$$

in the planes x = k, y = k, and z = k. Identify the surface and sketch it.

Hyperboloid of two sheets. The quadric surface with equations

1.
$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

2. $-\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
3. $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

are called **hyperbolids of two sheets** since two of its traces are hyperbolas and one is an ellipse, and its surface is two sheets.

Example 3. Find the traces of the surface

$$9x^2 - y^2 - z^2 = 9$$

in the planes x = k, y = k, and z = k. Identify the surface and sketch it.

Cone. The quadric surface with equations

1.
$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

2. $\frac{y^2}{b^2} = \frac{x^2}{a^2} + \frac{z^2}{c^2}$

3.
$$\frac{x^2}{a^2} = \frac{y^2}{b^2} + \frac{z^2}{c^2}$$

are called **cones**.

If P is any point on the cone, then the line OP lies entirely on the cone. The traces in horizontal planes z = k are ellipses and traces in vertical planes x = k or y = k are hyperbolas if $k \neq 0$ but are pairs of lines if k = 0.

Paraboloids. The quadric surface with equations

1.
$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

2. $\frac{y}{b} = \frac{x^2}{a^2} + \frac{z^2}{c^2}$
3. $\frac{x}{a} = \frac{y^2}{b^2} + \frac{z^2}{c^2}$

are called **elliptic paraboloids** because its traces in horizontal planes z = k are ellipses, whereas its in vertical planes x = k or y = k are parabolas.

Example 4. Find the traces of the surface

$$y = x^2 + z^2$$

in the planes x = k, y = k, and z = k. Identify the surface and sketch it.

The hyperbolic paraboloid

1.
$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

2. $\frac{y}{b} = \frac{x^2}{a^2} - \frac{z^2}{c^2}$
3. $\frac{x}{a} = \frac{y^2}{b^2} - \frac{z^2}{c^2}$

also has parabolas as its vertical traces, but its has hyperbolas as its horizontal traces.

Quadric cylinders. When one of the variables is missing from the equation of a surface, then the surface is a cylinder. The equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ represents the elliptic cylinder, the equation $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ represents a hyperbolic cylinder, and the equation $y = ax^2$ represents the hyperbolic cylinder.

Example 5. Classify the quadric surface $4x^2 - y^2 + z^2 + 8x + 8z + 24 = 0$ and sketch it.