Chapter 12. Partial derivatives. Section 12.1 Functions of several variables.

Definition. Let $D \subset \mathbb{R}^{2}$. A function f of two variables is a rule that assigns to each ordered pair (x, y) in D a unique real number denoted by $f(x, y)$. The set D is the domain of f and its range is the set of values that f takes on, that is, $\{f(x, y) \mid(x, y) \in D)\}$.

We write $z=f(x, y)$ to make explicit the value taken on by f at the general point (x, y). The variables x and y are independent variables and z is dependent variable.

If a function f is given by a formula and no domain is specified, then the domain of f is understood to be the set of all pairs (x, y) for which the given expression is well-defined real number.

Example 1. Find the domain and the range of the function $f(x, y)=x^{2} \ln (x-y)$ and evaluate $f(e, 0)$.

Definition. If f is a function of two variables with domain D, the graph of f is the set

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f(x, y),(x, y) \in D\right\}
$$

Example 2. Sketch the graph of the function $f(x, y)=3-x^{2}-y^{2}$.

Definition. The level curves of a function f of two variables are the curves with equations $f(x, y)=k$, where k is a constant (in the range of f).

A level curve $f(x, y)=k$ is the locus of all points at which f takes on a given value k. In other words, it shows where the graph of f has height k.

Example 3. Describe the level curves for the following functions.

1. $f(x, y)=-x+4 y$
2. $f(x, y)=x^{2}-y^{2}$

Functions of three or more variables.

A function of three variables, f, is a rule that assigns to each ordered triple (x, y, z) in a domain $D \subset \mathbb{R}^{3}$ a unique real number denoted by $f(x, y, z)$.

We can get some information about f by examining its level surfaces, which are surfaces with equations $f(x, y, z)=k$, where k is a constant. If the point (x, y, z) moves along a level surface, the value of $f(x, y, z)$ remains fixed.

Example 4. Find the domain of the function $f(x, y, z)=\ln \left(16-4 x^{2}-4 y^{2}-z^{2}\right)$.

Example 5. Describe the level surfaces of the function $f(x, y, z)=x^{2}-y^{2}+z^{2}$.

A function of n variables is a rule that assigns a number $z=f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ to an n-tuple $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ of real numbers. The notation

$$
f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

is used to signify that f is a real valued function whose domain D is a subset of \mathbb{R}^{n}.

