Chapter 12. Partial derivatives.

Section 12.4 Tangent planes and differentials.

Tangent planes.

Suppose a surface S has equation $z=f(x, y)$, where f has continuous first partial derivatives, and let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S. Let C_{1} and C_{2} be the curves obtained by intersecting the vertical planes $y=y_{0}$ and $x=x_{0}$ with the surface S. P lies on both C_{1} and C_{2}. Let T_{1} and T_{2} be the tangent lines to the curves C_{1} and C_{2} Let T_{1} and T_{2} be the tangent lines to the curves C_{1} and C_{2} at the point P. The tangent plane to the surface S at the point P is defined to be the plane that containts both of the tangent lines T_{1} and T_{2}.

An equation on the tangent plane to the surface $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Example 1. Find the equation of the tangent plane to the surface $z=\ln (2 x+y)$ at the point $(-1,3,0)$.

Differentials. Consider a function of two variables $z=f(x, y)$. If x and y are given increments Δx and Δy, then the corresponding increment of z is

$$
\Delta z=f(x+\Delta x, y+\Delta y)-f(x, y)
$$

The increment Δz represents the change in the value of f when (x, y) changes to $(x+\Delta x, y+\Delta y)$.
The differentials $d x$ and $d y$ are independent variables. The differential $d z$ (or the total differential), is defined by

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y
$$

Example 2. Find the differential of the function $z=\sqrt[3]{x+y^{2}}$.

If we take

$$
d x=\Delta x=x-a \quad d y=\Delta y=y-b
$$

then the differential of z is

$$
d z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

On the other hand, the equation of the tangent plane to the surface $z=f(x, y)$ at the point $(a, b, f(a, b))$ is

$$
z-f(a, b)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

We see that $d z$ represents the change of height of the tangent plane whereas Δz represent the change in height of the surface $z=f(x, y)$ when (x, y) changes from (a, b) to $(a+\Delta x, b+\Delta y)$.

If $d x=\Delta x$ and $d y=\Delta y$ are small, then $\Delta z \approx d z$ and

$$
f(a+\Delta x, b+\Delta y) \approx f(a, b)+d z
$$

Example 3.

1. Use differential to approximate the value of the function $f(x, y)=\sqrt{20-x^{2}-7 y^{2}}$ at the point (1.95, 1.08).
2. Use differential to approximate the number $(\sqrt{99}+\sqrt[3]{124})^{2}$

Example 4. Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height 12 cm if the tin is 0.04 cm thick.

Functions of three or more variables. If $u=f(x, y, z)$, then the increment of u is

$$
\Delta u=f_{x}(x+\Delta x, y+\Delta y, z+\Delta z)-f(x, y, z)
$$

The differential $d u$ is defined in terms of the differentials $d x, d y$, and $d z$ of the independent variables by

$$
d u=f_{x}(x, y, z) d x+f_{y}(x, y, z) d y+f_{z}(x, y, z) d z
$$

If $d x=\Delta x, d y=\Delta y$, and $d z=\Delta z$ are small and f has continuous partial derivatives, then $\Delta u \approx d u$.

