Chapter 12. Partial derivatives.

 Section 12.5 The chain rule.For a function of a single variable $y=f(x)$ and $x=g(t)$, then $\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}$.
The Chain Rule (case 1). Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(t)$ and $y=h(t)$ are both differentiable functions of t. Then z is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Example 1. If $z=x^{2} y^{3}+x^{3} y^{2}$, where $x=1+\sqrt{t}$ and $y=1+e^{2 t}$, find $\frac{d z}{d t}$.

Example 2. The radius of a right circular cylinder is decreasing at a rate of $1.2 \mathrm{~cm} / \mathrm{s}$ while its height is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. At what rate is the volume of the cylinder changing when the radius is 80 cm and the height is 150 cm .

The Chain Rule (case 2). Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(s, t), y=h(s, t)$, and the partial derivatives g_{s}, g_{t}, h_{s}, and h_{t} exist. Then

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

Example 3. If $z=x^{2} \sin y$, where $x=s^{2}+t^{2}$ and $y=2 s t$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

The Chain Rule (general version). Suppose that u is a differentiable function of the n variables $x_{1}, x_{2}, \ldots, x_{n}$ and each x_{j} is a function of the m variables $t_{1}, t_{2}, \ldots, t_{m}$ such that all partial derivatives $\partial x_{j} / \partial t_{i}$ exist $(j=1,2, \ldots, n, i=1,2, \ldots, m)$. Then u is a function of $t_{1}, t_{2}, \ldots, t_{m}$ and

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\ldots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}}
$$

for each $i=1,2, \ldots, m$.
Example 4. If $z=\frac{x}{y}$, where $x=r e^{s t}, y=r s e^{t}$, find $\frac{\partial z}{\partial r}, \frac{\partial z}{\partial s}$, and $\frac{\partial z}{\partial t}$.

Implicit differentiation. We suppose that an equation of the form $F(x, y)=0$ defines y implicitly as a differentiable function of x, that is $y=f(x)$, where $F(x, f(x))=0$ for all x in the domain of f.

In order to find $d y / d x$, we differentiate both parts of the equation $F(x, y)=0$ with respect to x :

$$
\begin{aligned}
& \frac{d}{d x}(F(x, y))=\frac{d}{d x}(0) \\
& \frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
\end{aligned}
$$

Since $\frac{d x}{d x}=1$, then

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}
$$

Example 5. Find $d y / d x$ if $x^{2}-x y+y^{3}=8$.

Suppose that z is given implicitly as a function $z=f(x, y)$ by an equation of the form $F(x, y, z)=$ 0 . If F is differentiable and f_{x} and f_{y} exist, then we can use the Chain Rule to differentiate the equation $F(x, y, z)=0$ as follows

$$
\frac{\partial F}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial x}+\frac{\partial F}{\partial x} \frac{\partial x}{\partial x}=0
$$

Since $\frac{\partial x}{\partial x}=1$ and $\frac{\partial y}{\partial x}=0$, then

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0
$$

or

$$
\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}
$$

Example 6. Find $\partial z / \partial x$ and $\partial z / \partial y$ if $x y z=\cos (x+y+z)$.

