Chapter 12. Partial derivatives.
 Section 12.6 Directional derivatives and the gradient vector.

Let $z=f(x, y)$. We wish to find the rate of change of z at $\left(x_{0}, y_{0}\right)$ in the direction of an arbitrary unit vector $\vec{u}=<a, b>$.

To do this we consider the surface S with equation $z=f(x, y)$ and we let $z_{0}=f\left(x_{0}, y_{0}\right)$. Then the point $P\left(x_{0}, y_{0}, z_{0}\right)$ lies on S. The vertical plane that passes through P in the direction \vec{u} intersects S in a curve C. The slope of the tangent line T to C at P is the rate of change of change of z in the direction of \vec{u}.
Let $Q(x, y, z)$ be another point on C. If $P^{\prime}\left(x_{0}, y_{0}, 0\right)$ and $Q^{\prime}(x, y, 0)$ are projections of P and Q on the $x y$-plane, then the vector $\overrightarrow{P^{\prime} Q^{\prime}}=<$ $x-x_{0}, y-y_{0}, 0>$ is parallel to \vec{u} and so

$$
\overrightarrow{P^{\prime} Q^{\prime}}=h \vec{u}=<h a, h b>
$$

for some scalar h. Therefore

$$
x-x_{0}=h a \quad y-y_{0}=h b
$$

and

$$
\frac{\Delta z}{h}=\frac{z-z_{0}}{h}=\frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

If we take the limit as $h \rightarrow 0$, we obtain the rate of change of z in the direction of \vec{u}, which is called the directional derivative of f in the direction of \vec{u}.
Definition. The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\vec{u}=<$ $a, b>$ is

$$
D_{\vec{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{z-z_{0}}{h}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if this limit exists.
Theorem. If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\vec{u}=<a, b>$ and

$$
D_{\vec{u}} f(x, y)=\frac{\partial f}{\partial x}(x, y) a+\frac{\partial f}{\partial y}(x, y) b
$$

If the unit vector \vec{u} makes an angle θ with the positive x-axis, then

$$
D_{\vec{u}} f(x, y)=\frac{\partial f}{\partial x}(x, y) \cos \theta+\frac{\partial f}{\partial y}(x, y) \sin \theta
$$

Example 1. Find the directional derivative of the function $f(x, y)=y^{x}$ at the point $(1,2)$ in the direction of the unit vector \vec{u} given by angle $\theta=-2 \pi / 3$.

Definition. If f is a function of two variables x and y, then the gradient of f is defined by

$$
\operatorname{grad}(f)=\nabla f(x, y)=\left\langle\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right\rangle
$$

Then

$$
D_{\vec{u}} f(x, y)=\nabla f(x, y) \cdot \vec{u} .
$$

Example 2. Find the directional derivative of the function $f(x, y)=x e^{x y}$ at the point $(-3,0)$ in the direction of the vector $\vec{v}=2 \vec{\imath}+3 \vec{\jmath}$.

For a function of three variables $w=f(x, y, z)$ the gradient vector is

$$
\operatorname{grad}(f)=\nabla f(x, y, z)=\left\langle\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right\rangle
$$

and

$$
D_{\vec{u}} f(x, y, z)=\nabla f(x, y, z) \cdot \vec{u} .
$$

Theorem. Suppose f is a differentiable function of two or three variables and $\vec{x}=<x, y>$ if f is a function of two variables $\vec{x}=<x, y, z>$ if f is a function of three variables. The maximum value of the directional derivative $D_{\vec{u}} f(\vec{x})$ is $|\nabla f(\vec{x})|$ and it occurs when \vec{u} has the same direction as the gradient vector $\nabla f(\vec{x})$.

Example 3. Suppose that over a certain region of space the electrical potential V is given by $V(x, y, z)=5 x^{2}-3 x y+x y z$.

1. Find the rate of change of the potential at $P(3,4,5)$ in the direction of the vector $\vec{v}=<$ $1,1,-1>$.
2. In which direction does V change most rapidly at P ?
3. What is the maximum rate of change at P ?

Tangent planes to level surfaces.

Suppose S is a surface with equation $F(x, y, z)=k$, that is, it is a level surface of the function $w=F(x, y, z)$, and let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S.

We define the tangent plane to the level surface $F(x, y, z)=k$ at $P\left(x_{0}, y_{0}, z_{0}\right)$ as the plane that passes through P and has normal vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ and its equation is

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

The normal line to S at P is the line passing through P and perpendicular to the tangent plane (its direction is given by the gradient vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$). Its symmetric equations are

$$
\frac{x-x_{0}}{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{y-y_{0}}{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{z-z_{0}}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}
$$

If the equation of a surface S is of the form $z=f(x, y)$, we can rewrite

$$
F(x, y, z)=f(x, y)-z=0
$$

and regard S as a level surface of F with $k=0$. Then

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right), \quad F_{y}\left(x_{0}, y_{0}, z_{0}\right)=f_{y}\left(x_{0}, y_{0}\right), \quad F_{z}\left(x_{0}, y_{0}, z_{0}\right)=-1
$$

so the equation of the tangent plane to S at $\left(x_{0}, y_{0}\right)$ is

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-z_{0}\right)=0
$$

and the equation of the normal line to S at $\left(x_{0}, y_{0}\right)$ is

$$
\frac{x-x_{0}}{f_{x}\left(x_{0}, y_{0}\right)}=\frac{y-y_{0}}{f_{y}\left(x_{0}, y_{0}\right)}=\frac{z-z_{0}}{-1}
$$

Example 4. Find equations of the tangent plane and the normal line to the surface $x^{2}-2 y^{2}-$ $3 z^{2}+x y z=4$ at the point $(3,-2,-1)$.

Example 5. Find parametric equations for the tangent line to the curve of intersection of the paraboloid $z=x^{2}+y^{2}$ and the ellipsoid $4 x^{2}+y^{2}+z^{2}=9$ at the point $(-1,1,2)$.

