Chapter 12. Partial derivatives.

Section 12.7 Maximum and minimum values.

Definition. A function of two variables has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$ for all points (x, y) in some disk with center (a, b). The number $f(a, b)$ is called a local maximum value. If $f(x, y) \geq f(x, y)$ for all (x, y) in such a disk, $f(a, b)$ is a local minimum value.
Theorem. If f has a local extremum (that is, a local maximum or minimum) at (a, b) and the first-order partial derivatives of f exist there, then $f_{x}(a, b)=f_{y}(a, b)=0$.

Geometric interpretation of the Theorem: if the graph of f has a tangent plane at a local extremum, then the tangent plane must be horizontal.

A point (a, b) such that $f_{x}(a, b)=f_{y}(a, b)=0$ or one of these partial derivatives does not exist, is called a critical point of f. At a critical point, a function could have a local minimum or a local maximum or neither.
Example 1. Find the extreme values of $f(x, y)=y^{2}-x^{2}$.

Second derivative test. Suppose the second partial derivatives of f are continuous in a disk with center (a, b), and suppose $f_{x}(a, b)=f_{y}(a, b)=0$. Let

$$
D=D(a, b)=\left|\begin{array}{cc}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{x y}(a, b) & f_{y y}(a, b)
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
(b) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
(c) If $D<0$, then $f(a, b)$ is not a local extremum. $f(a, b)$ is a saddle point. If $D=0$ the test gives no information.
Example 2. Find the local extrema of $f(x, y)=x^{3}-3 x y+y^{3}$.

Example 3. Find the points on the surface $z^{2}=x y+1$ that are closest to the origin.

Absolute maximum and minimum values. A closed set in \mathbb{R}^{2} is one that contains all its boundary points. A bounded set in \mathbb{R}^{2} is one that contained within some disk.
Extreme value theorem for functions of two variables. If f is continuous on a closed, bounded set D in \mathbb{R}^{2}, then f attains an absolute maximum value $f\left(x_{1}, y_{1}\right)$ and an absolute minimum value $f\left(x_{2}, y_{2}\right)$ at some points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in D.

To find the absolute maximum and minimum values of a continuous function f on a closed bounded set D :

1. Find the values of f at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.
3. The largest of the values of f from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Example 4. Find the absolute maximum and minimum values of the function $f(x, y)=$ $x^{2}+y^{2}+x^{2} y+4$ on the set $D=\{(x, y)| | x|\leq 1,|y| \leq 1\}$.

