Section 13.1 Double integrals over rectangles.
We would like to define the double integral of a function f of two variables that is defined on a closed rectangle

$$
R=[a, b] \times[c, d]=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}
$$

We take a partition P of R into subrectangles. This is accomplished by partitioning the intervals $[a, b]$ and $[c, d]$ as follows:

$$
\begin{gathered}
a=x_{0}<x_{1}<\ldots<x_{m-1}<x_{m}=b \\
c=y_{0}<y_{1}<\ldots<y_{n-1}<y_{n}=d
\end{gathered}
$$

By drawing lines parallel to the coordinate axes through these partition points we form the subrectangles

$$
R_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]
$$

for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$. There are $m n$ of these subrectangles. If we let $\Delta x_{i}=x_{i}-x_{i-1}$ and $\Delta y_{j}=y_{j}-y_{j-1}$, then the area of $R_{i j}$ is $\Delta A_{i j}=\Delta x_{i} \Delta y_{j}$.

Next we choose a point $\left(x_{i j}^{*}, y_{i j}^{*}\right) \in R_{i j}$ and form the double Riemann sum

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A_{i j}
$$

We denote by $\|P\|$ the norm of the partition, which is the length of the longest diagonal of all the subrectangles $R_{i j}$.

Definition. The double integral of f over the rectangle R is

$$
\iint_{R} f(x, y) d A=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A_{i j}
$$

if the limit exists.

Note 1. In view of the fact that $\Delta A_{i j}=\Delta x_{i} \Delta y_{j}$, another notation that is used sometimes for the double integral is

$$
\iint_{R} f(x, y) d A=\iint_{R} f(x, y) d x d y
$$

Note 2. A function f is called integrable if the limit in the definition exists.
Example 1. Find an approximation to the integral

$$
\iint_{R}\left(x-3 y^{2}\right) d A
$$

where $R=[0,2] \times[1,2]$, by computing the double Riemann sum with partition lines $x=1$ and $y=3 / 2$ and taking $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ to be the center of each rectangle.

Double integrals of positive functions can be interprepreted as volumes. Suppose that $f(x, y) \geq 0$ and f is defined on the rectangle $R=[a, b] \times[c, d]$. The graph of f is a surface with equation $z=f(a, b)$. Let S be the solid that lies above R and under the graph of f

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq z \leq f(x, y),(x, y) \in R\right\}
$$

If we partition R into subrectangles $R_{i j}$ and choose $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ in $R_{i j}$, then we can approximate the part of S that lies above $R_{i j}$ by a thin rectangular column with base $R_{i j}$ and height $f\left(x_{i j}^{*}, y_{i j}^{*}\right)$. The volume of the column is

$$
V_{i j}=f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A_{i j}
$$

If we follow this procedure for all rectangles and add the volumes of the corresponding boxes, we get an approximation to the total volume of S

$$
V=\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A_{i j}
$$

Approximation becomes better if we use a finer partition P.
Theorem. If $f(x, y) \geq 0$ and f is continuous on the rectangle R, then the volume V of the solid that lie above R and under the surface $z=f(x, y)$ is

$$
V=\iint_{R} f(x, y) d A
$$

