Chapter 13. Multiple integrals.

Section 13.2 Iterated integrals.

Suppose f is a function of two variables that is integrable over the rectangle $R=[a, b] \times[c, d]$.
We use notation $\int_{c}^{d} f(x, y) d y$ to mean that x is held fixed and $f(x, y)$ is integrated with respect to y from $y=c$ to $y=d$. This procedure is called partial integration with respect to y.

$$
\begin{gathered}
A(x)=\int_{c}^{d} f(x, y) d y \\
\int_{a}^{b} A(x) d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
\end{gathered}
$$

The integral $\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x$ is called an iterated integral. Thus,

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
$$

means that we first integrate with respect to y from c to d and then with respect to x from a to b.
Similarly, the iterated integral

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

means that we first integrate with respect to x from a to b and then with respect to y from c to d. Example 1. Evaluate the iterated integrals:

1. $\int_{0}^{3} \int_{0}^{1} \sqrt{x+y} d x d y$
2. $\int_{0}^{1} \int_{0}^{1} \frac{x y}{\sqrt{x^{2}+y^{2}+1}} d y d x$

Fubini's Theorem. If f is continuous on the rectangle $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

Example 2. Calculate the double integral

$$
\iint_{R}\left(x y^{2}+\frac{y}{x}\right) d A
$$

where $R=\{(x, y) \mid 2 \leq x \leq 3,-1 \leq y \leq 0\}$.

Example 3. Find the volume of the solid lying under the elliptic paraboloid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+z=1$ and above the rectangle $R=[-1,1] \times[-2,2]$.

