Section 13.3 Double integrals over general regions.
A plane region D is said to be of type \mathbf{I} if it lies between the graphs of two continuous functions of f, that is,

$$
D=\left\{(x, y) \mid x \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

where g_{1} and g_{2} are continuous on $[a, b]$.

In order to evaluate $\iint_{D} f(x, y) d A$ when D is a region of type I , we choose a rectangle $R=$ $[a, b] \times[c, d]$ that contains D and we let

$$
F(x, y)= \begin{cases}f(x, y), & \text { if }(x, y) \in D \\ 0, & \text { if }(x, y) \text { is in } R \text { but not in } D\end{cases}
$$

Then, by Fubini's Theorem,

$$
\iint_{D} f(x, y) d A=\iint_{R} F(x, y) d A=\int_{a}^{b} \int_{c}^{d} F(x, y) d y d x
$$

$F(x, y)=0$ if $y<g_{1}(x, y)$ or $\left.y>g_{2}(x)\right)$. Therefore, $\int_{c}^{d} F(x, y) d y=\int_{c}^{g_{1}(x)} F(x, y) d y+\int_{g_{1}(x)}^{g_{2}(x)} F(x, y) d y+$ $\int_{g_{2}(x)}^{d} F(x, y) d y=\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y$.

If f is continuous on a type I region D such that
then

$$
\begin{aligned}
D= & \left\{(x, y) \mid x \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\} \\
& \iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
\end{aligned}
$$

Example 1. Evaluate the integral

$$
\iint_{D} x y d A
$$

if $D=\left\{(x, y) \mid 0 \leq x \leq 1, x^{2} \leq y \leq \sqrt{x}\right\}$.

We also consider the plane region of type II, which can be expressed as

$$
D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

where h_{1} and h_{2} are continuous.

We can show that

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

where D is a type II region.
Example 2. Evaluate the double integrals

$$
\iint_{D}\left(y^{2}-x\right) d A
$$

where D is bounded by $x=y^{2}$ and $x=3-2 y^{2}$.

Properties of double integrals.

We assume that all of the following integrals exist. Then

1. $\iint_{D}[f(x, y)+g(x, y)] d A=\iint_{D} f(x, y) d A+\iint_{D} g(x, y) d A$
2. $\iint_{D} c f(x, y) d A=c \iint_{D} f(x, y) d A$, where c is a constant
3. If $f(x, y) \geq g(x, y)$ for all (x, y) in D, then

$$
\iint_{D} f(x, y) d A \geq \iint_{R} g(x, y) d A
$$

4. If $D=D_{1} \cup D_{2}$, where D_{1} and D_{2} do not overlap except perhaps on their boundaries, then

$$
\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A
$$

5. $\iint_{D} 1 d A=A(D)$
6. If $m \leq f(x, y) \leq M$ for all (x, y) in D, then

$$
m A(D) \leq \iint_{D} f(x, y) d A \leq M A(D)
$$

Example 3. Evaluate

$$
\iint_{D} y e^{x} d A
$$

if D is the triangular region with vertices $(0,0),(2,4)$, and $(6,0)$.

Example 4. Sketch the region of integration and change the order of integration for

$$
\int_{0}^{1} \int_{y^{2}}^{2-y} f(x, y) d x d y
$$

Example 5. Find the volume of the solid under the paraboloid $z=3 x^{2}+y^{2}$ and above the region bounded by $y=x$ and $x=y^{2}-y$.

