Chapter 13. Multiple integrals.

Section 13.5 Double integrals in polar coordinates.
We want to evaluate

$$
\iint_{R} f(x, y) D A
$$

where R is a polar rectangle

$$
R=\{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}
$$

We start with a partition of $[a, b]$ into m subintervals

$$
a=r_{0}<r_{1}<r_{2}<\ldots<r_{m}=b
$$

and a partition of $[\alpha, \beta]$ into n subintervals

$$
\alpha=\theta_{0}<\theta_{1}<\theta_{2}<\ldots<\theta_{n}=\beta
$$

Then the circles $r=r_{i}$ and the rays $\theta=\theta_{j}$ determine a polar partition P of R into the small polar rectangles. The norm $\|P\|$ of the polar partition is the length of the longest diagonal of the polar subrectangles.

The "center" of the polar subrectangle

$$
R_{i j}=\left\{(r, \theta) \mid r_{i-1} \leq r \leq r_{i}, \theta_{j-1} \leq \theta \leq \theta_{j}\right\}
$$

has polar coordinates

$$
r_{i}^{*}=\frac{1}{2}\left(r_{i}+r_{i-1}\right) \quad \theta_{j}^{*}=\frac{1}{2}\left(\theta_{j}+\theta_{j-1}\right)
$$

The area of the rectangle $R_{i j}$ is

$$
A\left(R_{i j}\right)=\Delta A_{i j}=\frac{1}{2}\left(r_{i}^{2}-r_{i-1}^{2}\right) \Delta \theta_{j}=\frac{1}{2}\left(r_{i}+r_{i-1}\right)\left(r_{i}-r_{i-1}\right) \Delta \theta_{j}=r_{i}^{*} \Delta r_{i} \Delta \theta_{j}
$$

where $\Delta \theta_{j}=\theta_{j}-\theta_{j-1}, \Delta r_{i}=r_{i}-r_{i-1}$.

The Cartesian coordinates of the center of $R_{i j}$ are

$$
\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right)
$$

so a Riemann sum is

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) \Delta A_{i j}=\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) r_{i}^{*} \Delta r_{i} \Delta \theta_{j}
$$

Therefore, we have

$$
\begin{gathered}
\iint_{R} f(x, y) d A=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) r_{i}^{*} \Delta r_{i} \Delta \theta_{j}=\iint_{R} f(r \cos \theta, r \sin \theta) r d r d \theta= \\
\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{gathered}
$$

Change to polar coordinates in a double integral. If f is continuous on a polar rectangle R given by $0 \leq a \leq r \leq b, \alpha \leq \theta \leq \beta$, where $0 \leq \alpha-\beta \leq 2 \pi$, then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Example 1. Evaluate the integral

$$
\iint_{R} x y d A
$$

where R is the region in the first quadrant that lies between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=25$.

If f is continuous on a polar region of the form

$$
D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\},
$$

then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Example 2. Evaluate the integral

$$
\iint_{D} x d A
$$

where R is the region in the first quadrant that lies between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=2 x$.

Example 3. Use a double integral to find the area of the region enclosed by the lemniscate $r^{2}=4 \cos 2 \theta$.

Example 4. Use a double integral to find the area of the region inside the circle $r=3 \cos \theta$ and outside the cardioid $r=1+\cos \theta$.

Example 5. Use polar coordinates to find the volume above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=1$.

