Chapter 13. Multiple integrals.
Section 13.9 Cylindrical and spherical coordinates.

Cylindrical coordinate system:

To convert from rectangular to cylindrical coordinates we use

$$
r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x} \quad z=z
$$

Example 1.

(a) Plot the point with cylindrical coordinates $(2,2 \pi / 3,8)$ and find its rectangular coordinates.
(b) Find the cylindrical coordinates of the point with rectangular coordinates $(-\sqrt{2}, \sqrt{2}, 0)$.

Example 2. Sketch the solid given by the inequalities

$$
0 \leq \theta \leq \pi / 2, \quad r \leq z \leq 2
$$

Spherical coordinate system:

To convert from rectangular to cylindrical coordinates we use

$$
\rho^{2}=x^{2}+y^{2}+z^{2} \quad \cos \varphi=\frac{z}{\rho} \quad \cos \theta=\frac{x}{\rho \sin \varphi}
$$

Example 3.

1. The point $(1, \pi / 4, \pi / 6)$ is given in spherical coordinates. Find its rectangular coordinates.
2. The point $(-\sqrt{3},-3,-2)$ is given in rectangular coordinates. Find its spherical coordinates.

To convert from spherical to cylindrical coordinates we use

$$
\theta=\theta \quad z=\rho \cos \varphi \quad r=\sqrt{\rho^{2}-z^{2}}
$$

To convert from cylindrical to spherical coordinates we use

$$
\theta=\theta \quad \rho=\sqrt{r^{2}+z^{2}} \quad \cos \varphi=\frac{z}{\rho}
$$

Example 4.

1. The point $(8, \pi / 6, \pi / 2)$ is given in spherical coordinates. Find its cylindrical coordinates.
2. The point $(\sqrt{2}, \pi / 4,0)$ is given in cylindrical coordinates. Find its spherical coordinates.

Example 5. Sketch the solid described by the inequalities

$$
-\pi / 2 \leq \theta \leq \pi / 2, \quad 0 \leq \varphi \leq \pi / 6, \quad 0 \leq \rho \leq \sec \varphi
$$

Example 6. Write the equation

$$
x^{2}-y^{2}-2 z^{2}=4
$$

in cylindrical and spherical coordinates.

