## Chapter 14. Vector calculus. Section 14.1 Vector fields.

**Definition.** Let D be a set in  $\mathbb{R}^2$  (a plane region). A **vector field on**  $\mathbb{R}^2$  is a function  $\vec{F}$  that assigns to each point  $(x, y) \in D$  a two-dimensional vector  $\vec{F}(x, y)$ .

$$\vec{F}(x,y) = P(x,y)\vec{\imath} + Q(x,y)\vec{\jmath}$$

The components functions P and Q are sometimes called scalar fields.

**Definition.** Let E be a set in  $\mathbb{R}^3$ . A **vector field on**  $\mathbb{R}^3$  is a function  $\vec{F}$  that assigns to each point  $(x, y, z) \in E$  a two-dimensional vector  $\vec{F}(x, y, z)$ .

$$\vec{F}(x,y,z) = P(x,y,z)\vec{\imath} + Q(x,y,z)\vec{\jmath} + R(x,y,z)\vec{k}$$

 $\vec{F}$  is continuous is and only if P, Q, and R are continuous. Examples of vector fields.



**Example 1.** Sketch the vector field  $\vec{F}$  if  $\vec{F}(x,y) = x\vec{\imath} - y\vec{\jmath}$ .

Let f(x,y) be a scalar function of two variables, then

$$\nabla f(x,y) = \langle f_x, f_y \rangle$$

is a vector field called a **gradient vector field**.

If f(x, y, z) be a scalar function of three variables, then its gradient vector field is defined as

$$\nabla f(x, y, z) = \langle f_x, f_y, f_z \rangle$$



A vector field is called a **conservative vector field** if it is the gradient of some scalar function, that it. if there exists a function f such that  $\vec{F} = \nabla f$ . Then f is called a **potential function** for  $\vec{F}$ .