Chapter 14. Vector calculus.
 Section 14.1 Vector fields.

Definition. Let D be a set in \mathbb{R}^{2} (a plane region). A vector field on \mathbb{R}^{2} is a function \vec{F} that assigns to each point $(x, y) \in D$ a two-dimensional vector $\vec{F}(x, y)$.

$$
\vec{F}(x, y)=P(x, y) \vec{\imath}+Q(x, y) \vec{\jmath}
$$

The components functions P and Q are sometimes called scalar fields.
Definition. Let E be a set in \mathbb{R}^{3}. A vector field on \mathbb{R}^{3} is a function \vec{F} that assigns to each point $(x, y, z) \in E$ a two-dimensional vector $\vec{F}(x, y, z)$.

$$
\vec{F}(x, y, z)=P(x, y, z) \vec{\imath}+Q(x, y, z) \vec{\jmath}+R(x, y, z) \vec{k}
$$

\vec{F} is continuous is and only if P, Q, and R are continuous. Examples of vector fields.

Example 1. Sketch the vector field \vec{F} if $\vec{F}(x, y)=x \vec{\imath}-y \vec{\jmath}$.

Let $f(x, y)$ be a scalar function of two variables, then

$$
\nabla f(x, y)=<f_{x}, f_{y}>
$$

is a vector field called a gradient vector field.
If $f(x, y, z)$ be a scalar function of three variables, then its gradient vector field is defined as

$$
\nabla f(x, y, z)=<f_{x}, f_{y}, f_{z}>
$$

Example 2. Find the gradient vector field of the function $f(x, y, z)=x \ln (y-z)$.

A vector field is called a conservative vector field if it is the gradient of some scalar function, that it. if there exists a function f such that $\vec{F}=\nabla f$. Then f is called a potential function for \vec{F}.

