Chapter 14. Vector calculus.

Section 14.2 Line integrals.
Let C be a smooth plane curve with parametric equations

$$
x=x(t), \quad y=y(t), \quad a \leq t \leq b
$$

A partition of the parameter interval $[a, b]$ by points t_{i} with

$$
a=t_{0}<t_{1}<\ldots<t_{n}=b
$$

determine a partition P of the curve by points $P_{i}\left(x_{i}, y_{i}\right)$, where $x_{i}=x\left(t_{i}\right), y_{i}=y\left(t_{i}\right), z_{i}=z\left(t_{i}\right)$. Points P_{i} divide C into n subarcs with length $\Delta s_{1}, \Delta s_{2}, \ldots, \Delta s_{n}$. The norm $\|P\|$ of the partition is the longest of these lengths. We choose any point $P_{i}^{*}\left(x_{i}^{*}, y_{i}^{*}\right)$ in the i th subarc.

Definition. If f is defined on a smooth curve C given by

$$
x=x(t), \quad y=y(t), \quad a \leq t \leq b
$$

then the line integral of f along C with respect to arc length is

$$
\int_{C} f(x, y) d s=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

if this limit exists.
Since

$$
d s=\sqrt{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2}} d t
$$

then

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2}} d t
$$

The value of the line integral does not depend on the parametrization of the curve provided that the curve is traversed exactly once as t increases from a to b.

Example 1. Evaluate the line integral $\int_{C} x d s$, where C is a given by $x=t^{3}, y=t, 0 \leq t \leq 1$.

Suppose now that C is a piecewise-smooth curve; that is, C is a union of a finite number of smooth functions $C_{1}, C_{2}, \ldots, C_{n}$. Then

$$
\int_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s+\ldots+\int_{C_{n}} f(x, y) d s
$$

Example 2. Evaluate $\int_{C}(x+y) d s$ if C consists of line segments from $(1,0)$ to $(0,1)$, from $(0,1)$ to $(0,0)$, and from $(0,0)$ to $(0,1)$.

Physical interpretation of a line integral $\int_{C} f(x, y) d s$. Suppose that $\rho(x, y)$ represents the linear density at a point (x, y) of a thin wire shaped like a curve C. Then the mass of wire is

$$
m=\int_{C} \rho(x, y) d s
$$

The center of mass of the wire with density function ρ is at the point (\bar{x}, \bar{y}), where

$$
\bar{x}=\frac{1}{m} \int_{C} x \rho(x, y) d s \quad \bar{y}=\frac{1}{m} \int_{C} y \rho(x, y) d s
$$

Example 3. A thin wire is bent into the shape of a semicircle $x^{2}+y^{2}=4, x \geq 0$. If the linear density is a constant k, find the mass and center of mass of the wire.

Line integrals of f along C with respect to x and y :

$$
\begin{aligned}
\int_{C} f(x, y) d x & =\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta x_{i}, \\
\int_{C} f(x, y) d y & =\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta y_{i-1}, \\
\int_{i}, & \Delta y_{i}=y_{i}-y_{i-1}
\end{aligned}
$$

If $x=x(t), y=y(t)$, then $d x=x^{\prime}(t) d t, d y=y^{\prime}(t) d t$, and

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \\
& \int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t
\end{aligned}
$$

In general, we will write

$$
\int_{C} P(x, y) d x+Q(x, y) d y=\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y
$$

Example 3. Evaluate $\int_{C} x \sqrt{y} d x+2 y \sqrt{x} d y$, if C consists of the arc of the circle $x^{2}+y^{2}=1$ from $(1,0)$ to $(0,1)$ and the line segment from $(0,1)$ to $(4,3)$.

A given parametrization $x=x(t), y=y(t), a \leq t \leq b$, determines an orientation of a curve C, with the positive direction corresponding to increasing value of the parameter t.

If $-C$ denotes the curve consisting of the same points as C but with the opposite orientation, then we have

$$
\int_{-C} f(x, y) d x=-\int_{C} f(x, y) d x \quad \int_{-C} f(x, y) d y=-\int_{C} f(x, y) d y
$$

but

$$
\int_{-C} f(x, y) d s=\int_{C} f(x, y) d s
$$

Line integrals in space.

Suppose that C is a smooth space curve given by the parametric equations

$$
x=x(t), \quad y=y(t) \quad z=z(t), \quad a \leq t \leq b
$$

or by a vector equation $\vec{r}(t)=x(t) \vec{\imath}+y(t) \vec{\jmath}+z(t) \vec{k}$. We define the linear integral of f along C with respect to arc length as

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2}+\left[\frac{d z}{d t}\right]^{2}} d t=\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| d t
$$

If $f(x, y, z)=1$, then

$$
\int_{c} d s=\int_{a}^{b}\left|\overrightarrow{r^{\prime}}(t) d t\right|=L
$$

Line integral along C with respect to x, y, and z can also be defined as

$$
\int_{C} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z=\int_{a}^{b}\left[P(x, y, z) x^{\prime}(t)+Q(x, y, z) y^{\prime}(t)+R(x, y, z) z^{\prime}(t)\right] d t
$$

Example 4. Evaluate $\int_{C} x^{2} z d s$ if C is given by $x=\sin (2 t), y=3 t, z=\cos (2 t), 0 \leq t \leq \pi / 4$.

Example 5. Evaluate $\int_{C} y z d y+x y d z$ if C is given by $x=\sqrt{t}, y=t, z=t^{2}, 0 \leq t \leq 1$.

Line integrals of vector fields.

Definition. Let \vec{F} be continuous vector field defined on a smooth curve C given by a vector function $\vec{r}(t), a \leq t \leq b$. Then the line integral of F along C is

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \overrightarrow{r^{\prime}}(t) d t=\int_{C} \vec{F} \cdot \vec{T} d s
$$

where \vec{T} is a unit tangent vector.
If $\vec{F}=P \vec{\imath}+Q \vec{\jmath}+R \vec{k}$, then

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} P d x+Q d y+R d x
$$

Example 6. Find the work done by the force field $\vec{F}(x, y, z)=x z \vec{\imath}+x y \vec{\jmath}+y z \vec{k}$ on a particle that moves along the curve $\vec{r}(t)=<t^{2},-t^{3}, t^{4}>, 0 \leq t \leq 1$.

