Chapter 14. Vector calculus.

Section 14.6 Parametric surfaces and their areas.

We suppose that

$$
\vec{r}(u, v)=x(u, v) \vec{\imath}+y(u, v) \vec{\jmath}+z(u, v) \vec{k}
$$

is a vector-valued function defined on an region D in the $u v$-plane and the partial derivatives of x, y, and z with respect to u and v are all continuous. The set of all points $(x, y, z) \in \mathbb{R}^{3}$, such that

$$
x=x(u, v), \quad y=y(u, v) \quad z=z(u, v)
$$

and $(u, v) \in D$, is called a parametric surface S with parametric equations

$$
x=x(u, v), \quad y=y(u, v) \quad z=z(u, v) .
$$

Example 1. Find a parametric representation for the part of the elliptic paraboloid $y=$ $6-3 x^{2}-2 z^{2}$ that lies to the right of the $x z$-plane.

In general, a surface given as the graph of the function $z=f(x, y)$, can always be regarded as a parametric surface with parametric equations

$$
x=x, \quad y=u \quad z=f(x, y)
$$

Surfaces of revolution also can be represented parametrically. Let us consider the surface S obtained by rotating the curve $y=f(x), a \leq x \leq b$, about the x-axis, where $f(x) \geq 0$ and f^{\prime} is continuous.

Let θ be the angle of rotation. If (x, y, z) is a point on S, then

$$
x=x \quad y=f(x) \cos \theta \quad z=f(x) \sin \theta
$$

The parameter domain is given by $a \leq x \leq b, 0 \leq \theta \leq 2 \pi$.

Example 2. Find equation for the surface generated by rotating the curve $x=4 y^{2}-y^{4}$, $-2 \leq y \leq 2$, about the y-axis.

Tangent planes.

Problem. Find the tangent plane to a parametric surface S given by a vector function $\vec{r}(u, v)$ at a point P_{0} with position vector $\vec{r}\left(u_{0}, v_{0}\right)$.

The tangent vector \vec{r}_{v} to C_{1} at P_{0} is

$$
\vec{r}_{v}=\frac{\partial x}{\partial v}\left(u_{0}, v_{0}\right) \vec{\imath}+\frac{\partial y}{\partial v}\left(u_{0}, v_{0}\right) \vec{\jmath}+\frac{\partial z}{\partial v}\left(u_{0}, v_{0}\right) \vec{k}
$$

Similarly, the tangent vector \vec{r}_{u} to C_{2} at P_{0} is

$$
\vec{r}_{u}=\frac{\partial x}{\partial u}\left(u_{0}, v_{0}\right) \vec{\imath}+\frac{\partial y}{\partial u}\left(u_{0}, v_{0}\right) \vec{\jmath}+\frac{\partial z}{\partial u}\left(u_{0}, v_{0}\right) \vec{k}
$$

Then the normal vector to the tangent plane to a parametric surface S at P_{0} is the vector $\vec{r}_{u} \times \vec{r}_{v}$. If $\vec{r}_{u} \times \vec{r}_{v} \neq \overrightarrow{0}$, then S is called smooth.

Example 3. Find the tangent plane to the surface with parametric equations $\vec{r}(u, v)=$ $(u+v) \vec{\imath}+u \cos v \vec{\jmath}+v \sin u \vec{k}$ at the point $(1,1,0)$.

Surface area. Let S be a parametric surface given by a vector function $\vec{r}(u, v),(u, v) \in D$. For simplicity, we start by considering a surface whose parameter domain D is a rectangle, and we partition it into subrectangles $R_{i j}$.

Let's choose $\left(u_{i}^{*}, v_{j}^{*}\right)$ to be the lower left corner of $R_{i j}$. The part $S_{i j}$ of the surface S that corresponds to $R_{i j}$ has the point $P_{i j}$ with position vector $\vec{r}\left(u_{i}^{*}, v_{j}^{*}\right)$ as one of its corners. Let

$$
\vec{r}_{u_{i}}=\vec{r}_{u}\left(u_{i}^{*}, v_{j}^{*}\right), \quad \vec{r}_{v_{j}}=\vec{r}_{v}\left(u_{i}^{*}, v_{j}^{*}\right)
$$

be the tangent vectors at $P_{i j}$. We approximate $S_{i j}$ by the parallelogram determined by the vectors $\Delta u_{i} \vec{r}_{u_{i}}$ and $\Delta v_{j} \vec{r}_{v_{j}}$ (this parallelogram lies in the tangent plane to S at $P_{i j}$). The area of this parallelogram is

$$
\left|\left(\Delta u_{i} \vec{r}_{u_{i}}\right) \times\left(\Delta v_{j} \vec{r}_{v_{j}}\right)\right|=\left|\vec{r}_{u_{i}} \times \vec{r}_{v_{j}}\right| \Delta u_{i} \Delta v_{j}
$$

so an approximation to the area of S is

$$
\sum_{i=1}^{m} \sum_{j=1}^{n}\left|\vec{r}_{u_{i}} \times \vec{r}_{v_{j}}\right| \Delta u_{i} \Delta v_{j} \rightarrow \iint_{D}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A \text { as }\|P\| \rightarrow 0
$$

Definition. If a smooth parametric surface S is given by the equation $\vec{r}(u, v)=x(u, v) \vec{\imath}+y(u, v) \vec{\jmath}+$ $z(u, v) \vec{k},(u, v) \in D$ and S is covered just once at (u, v) ranges throughout the parameter domain D, then the surface area of S is

$$
A(S)=\iint_{D}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
$$

where

$$
\vec{r}_{u}=\frac{\partial x}{\partial u} \vec{\imath}+\frac{\partial y}{\partial u} \vec{\jmath}+\frac{\partial z}{\partial u} \vec{k} \quad \vec{r}_{v}=\frac{\partial x}{\partial v} \vec{\imath}+\frac{\partial y}{\partial v} \vec{\jmath}+\frac{\partial z}{\partial v} \vec{k}
$$

If a surface S is given by $z=f(x, y),(x, y) \in D$, the parametric equations for S are

$$
x=x, \quad y=u \quad z=f(x, y)
$$

Then $\vec{r}_{x}=<1,0, f_{x}(x, y)>, \vec{r}_{y}=<0,1, f_{y}(x, y)>$, and

$$
\vec{r}_{x} \times \vec{r}_{y}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 0 & f_{x}(x, y) \\
0 & 1 & f_{y}(x, y)
\end{array}\right|=-f_{x} \vec{\imath}-f_{y} \vec{\jmath}+\vec{k}
$$

Then

$$
\left|\vec{r}_{x} \times \vec{r}_{y}\right|=\sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}}
$$

and

$$
A(S)=\iint_{D} \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A
$$

Example 4. Find the surface area of the part of the surface $z=x+y^{2}$ that lies above the triangle with vertices $(0,0),(1,1)$, and $(0,1)$.

Example 5. Find the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ that lies inside the cylinder $x^{2}+y^{2}=a x$.

