Chapter 14. Vector calculus.

Section 14.7 Surface integrals.
Suppose f is a function of three variables whose domain include a surface S. We divide S into patches $S_{i j}$ with area $\Delta S_{i j}$. We evaluate f at a point $P_{i j}^{*}$ in each patch, multiply by the area $\Delta S_{i j}$, and form the sum

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(P_{i j}^{*}\right) \Delta S_{i j}
$$

We define the surface integral of f over the surface S as

$$
\iint_{S} f(x, y, z) d S=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(P_{i j}^{*}\right) \Delta S_{i j}
$$

If the surface S is given by an equation $z=g(x, y),(x, y) \in D$, then

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(x, y, g(x, y)) \sqrt{\left[\frac{\partial g}{\partial x}\right]^{2}+\left[\frac{\partial g}{\partial y}\right]^{2}+1} d A
$$

If the surface S is given by vector function $\vec{r}(u, v)=x(u, v) \vec{\imath}+y(u, v) \vec{\jmath}+z(u, v) \vec{k},(u, v) \in D$, then

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(\vec{r}(u, v))\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
$$

where

$$
\vec{r}_{u}=\frac{\partial x}{\partial u} \vec{\imath}+\frac{\partial y}{\partial u} \vec{\jmath}+\frac{\partial z}{\partial u} \vec{k} \quad \vec{r}_{v}=\frac{\partial x}{\partial v} \vec{\imath}+\frac{\partial y}{\partial v} \vec{\jmath}+\frac{\partial z}{\partial v} \vec{k}
$$

Example 1.

1. Evaluate $\iint_{S} y d S$, where S is the part of the plane $3 x+2 y+z=6$ that lies in the first octant.
2. Evaluate $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S$, if S is given by vector equation $\vec{r}(u, v)=u \cos v \vec{\imath}+u \sin v \vec{\jmath}+v \vec{k}$, $0 \leq u \leq 1,0 \leq v \leq \pi$.
3. Evaluate $\iint_{S} x y d S$, if S is a boundary of the region enclosed by the cylinder $x^{2}+z^{2}=1$ and the planes $y=0$ and $x+y=2$.

If a thin sheet has the shape of a surface S and the density at the point (x, y, z) is $\rho(x, y, z)$, then the total mass of the sheet is

$$
m=\iint_{S} \rho(x, y, z) d S
$$

and the center of mass is $(\bar{x}, \bar{y}, \bar{z})$, where

$$
\bar{x}=\frac{1}{m} \iint_{S} x \rho(x, y, z) d S \quad \bar{y}=\frac{1}{m} \iint_{S} y \rho(x, y, z) d S \quad \bar{z}=\frac{1}{m} \iint_{S} z \rho(x, y, z) d S
$$

Oriented surfaces.

Let us consider a surface S that has a tangent plane at every point (x, y, z) on S (except at any boundary point).

There are two unit normal vectors $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}=-\overrightarrow{n_{1}}$ at (x, y, z). If it is possible to chose a unit normal vector \vec{n} at every such point (x, y, z) so that \vec{n} varies continuously over S, then S is called an oriented surface and the given choice of \vec{n} provides S with an orientation. There are two possible orientations for any orientable surface.

For a surface $z=g(x, y)$ the orientation is given by the unit normal vector

$$
\vec{n}=\frac{-\frac{\partial g}{\partial x} \vec{\imath}-\frac{\partial g}{\partial y} \vec{\jmath}+\vec{k}}{\sqrt{\left[\frac{\partial g}{\partial x}\right]^{2}+\left[\frac{\partial g}{\partial y}\right]^{2}+1}}
$$

Since the \vec{k}-component is positive, this gives the upward orientation of the surface.
If S is a smooth orientable surace given in parametric form by a vector function $\vec{r}(u, v)$, then its orientation is given by a unit normal vector

$$
\vec{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}
$$

For a closed surface, the positive orientation is the one for which the normal vectors point outward from S, the inward-pointing normals give the negative orientation.

Surface integrals of vector fields.
Definition. If \vec{F} is a continuous vector-field defined on an oriented surface S with normal vector \vec{n}, then the surface integral of F over S is

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S
$$

This integral is also called the flux of \vec{F} across S.
If $\vec{F}=<P(x, y, z), Q(x, y, z), R(x, y, z)>$ and the surface S is given by an equation $z=g(x, y)$, $(x, y) \in D$, then

$$
\vec{n}=\frac{-\frac{\partial g}{\partial x} \vec{\imath}-\frac{\partial g}{\partial y} \vec{\jmath}+\vec{k}}{\sqrt{\left[\frac{\partial g}{\partial x}\right]^{2}+\left[\frac{\partial g}{\partial y}\right]^{2}+1}}
$$

and

$$
\iint_{S} \vec{F} \cdot d S=\iint_{S} \vec{F} \cdot \vec{n} d S=\iint_{D}(P \vec{\imath}+Q \vec{\jmath}+R \vec{k}) \cdot \frac{-\frac{\partial g}{\partial x} \vec{\imath}-\frac{\partial g}{\partial y} \vec{\jmath}+\vec{k}}{\sqrt{\left[\frac{\partial g}{\partial x}\right]^{2}+\left[\frac{\partial g}{\partial y}\right]^{2}+1}} \sqrt{\left[\frac{\partial g}{\partial x}\right]^{2}+\left[\frac{\partial g}{\partial y}\right]^{2}+1} d A
$$

or

$$
\iint_{S} \vec{F} \cdot d S=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A
$$

If the surface S is given by vector function $\vec{r}(u, v)=x(u, v) \vec{\imath}+y(u, v) \vec{\jmath}+z(u, v) \vec{k},(u, v) \in D$, then

$$
\vec{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}
$$

and

$$
\iint_{S} \vec{F} \cdot d S=\iint_{S} \vec{F} \cdot \vec{n} d S=\iint_{D} \vec{F} \cdot \frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
$$

or

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F} \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d A
$$

Example 2. Find the flux of the vector field $\vec{F}=x^{2} y \vec{\imath}-3 x y^{2} \vec{\jmath}+4 y^{3} \vec{k}$ across the surface S, if S is the part of the elliptic paraboloid $z=x^{2}+y^{2}-9$ that lies below the rectangle $0 \leq x \leq 2,0 \leq y \leq 1$ and has downward orientation.

Example 3. A fluid has density 1500 and velocity field

$$
\vec{v}=-y \vec{\imath}+x \vec{\jmath}+2 z \vec{k}
$$

Find the rate of flow outward through the sphere $x^{2}+y^{2}+z^{2}=25$.

