Chapter 14. Vector calculus. Section 14.7 Surface integrals.

Suppose f is a function of three variables whose domain include a surface S. We divide S into patches S_{ij} with area ΔS_{ij} . We evaluate f at a point P_{ij}^* in each patch, multiply by the area ΔS_{ij} , and form the sum

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^*) \Delta S_{ij}$$

We define the surface integral of f over the surface S as

$$\iint_{S} f(x, y, z) dS = \lim_{\|P\| \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^*) \Delta S_{ij}$$

If the surface S is given by an equation $z = g(x, y), (x, y) \in D$, then

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, g(x, y)) \sqrt{\left[\frac{\partial g}{\partial x}\right]^{2} + \left[\frac{\partial g}{\partial y}\right]^{2} + 1} \, dA$$

If the surface S is given by vector function $\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$, $(u,v) \in D$, then

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\vec{r}(u, v)) |\vec{r}_{u} \times \vec{r}_{v}| \, dA$$

where

$$\vec{r}_u = \frac{\partial x}{\partial u}\vec{\imath} + \frac{\partial y}{\partial u}\vec{\jmath} + \frac{\partial z}{\partial u}\vec{k} \quad \vec{r}_v = \frac{\partial x}{\partial v}\vec{\imath} + \frac{\partial y}{\partial v}\vec{\jmath} + \frac{\partial z}{\partial v}\vec{k}$$

Example 1.

1. Evaluate $\iint_S y \, dS$, where S is the part of the plane 3x + 2y + z = 6 that lies in the first octant.

2. Evaluate $\iint_S \sqrt{1+x^2+y^2} \, dS$, if S is given by vector equation $\vec{r}(u,v) = u \cos v \vec{i} + u \sin v \vec{j} + v \vec{k}$, $0 \le u \le 1, 0 \le v \le \pi$.

3. Evaluate $\iint_S xy \, dS$, if S is a boundary of the region enclosed by the cylinder $x^2 + z^2 = 1$ and the planes y = 0 and x + y = 2.

If a thin sheet has the shape of a surface S and the density at the point (x, y, z) is $\rho(x, y, z)$, then the total **mass** of the sheet is

$$m = \iint_S \rho(x,y,z) dS$$

and the **center of mass** is $(\bar{x}, \bar{y}, \bar{z})$, where

$$\bar{x} = \frac{1}{m} \iint_{S} x\rho(x, y, z) dS \quad \bar{y} = \frac{1}{m} \iint_{S} y\rho(x, y, z) dS \quad \bar{z} = \frac{1}{m} \iint_{S} z\rho(x, y, z) dS$$

Oriented surfaces.

Let us consider a surface S that has a tangent plane at every point (x, y, z) on S (except at any boundary point).

There are two unit normal vectors $\vec{n_1}$ and $\vec{n_2} = -\vec{n_1}$ at (x, y, z). If it is possible to chose a unit normal vector \vec{n} at every such point (x, y, z) so that \vec{n} varies continuously over S, then S is called an **oriented surface** and the given choice of \vec{n} provides S with an **orientation**. There are two possible orientations for any orientable surface.

For a surface z = g(x, y) the orientation is given by the unit normal vector

$$\vec{n} = \frac{-\frac{\partial g}{\partial x}\vec{\imath} - \frac{\partial g}{\partial y}\vec{\jmath} + \vec{k}}{\sqrt{\left[\frac{\partial g}{\partial x}\right]^2 + \left[\frac{\partial g}{\partial y}\right]^2 + 1}}$$

Since the \vec{k} -component is positive, this gives the *upward* orientation of the surface.

If S is a smooth orientable surace given in parametric form by a vector function $\vec{r}(u, v)$, then its orientation is given by a unit normal vector

$$\vec{n} = \frac{\vec{r}_u \times \vec{r}_v}{|\vec{r}_u \times \vec{r}_v|}$$

For a closed surface, the positive orientation is the one for which the normal vectors point *outward* from S, the inward-pointing normals give the negative orientation.

Surface integrals of vector fields.

Definition. If \vec{F} is a continuous vector-field defined on an oriented surface S with normal vector \vec{n} , then the surface integral of F over S is

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \vec{n} \, dS$$

This integral is also called the **flux** of \vec{F} across S.

If $\vec{F} = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$ and the surface S is given by an equation $z = g(x, y), (x, y) \in D$, then

$$\vec{n} = \frac{-\frac{\partial g}{\partial x}\vec{i} - \frac{\partial g}{\partial y}\vec{j} + \vec{k}}{\sqrt{\left[\frac{\partial g}{\partial x}\right]^2 + \left[\frac{\partial g}{\partial y}\right]^2 + 1}}$$

and

$$\iint_{S} \vec{F} \cdot dS = \iint_{S} \vec{F} \cdot \vec{n} \, dS = \iint_{D} (P\vec{\imath} + Q\vec{\jmath} + R\vec{k}) \cdot \frac{-\frac{\partial g}{\partial x}\vec{\imath} - \frac{\partial g}{\partial y}\vec{\jmath} + \vec{k}}{\sqrt{\left[\frac{\partial g}{\partial x}\right]^{2} + \left[\frac{\partial g}{\partial y}\right]^{2} + 1}} \sqrt{\left[\frac{\partial g}{\partial y}\right]^{2} + \left[\frac{\partial g}{\partial y}\right]^{2} + 1} \, dA$$

or

$$\iint_{S} \vec{F} \cdot dS = \iint_{D} \left(-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R \right) dA$$

If the surface S is given by vector function $\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$, $(u,v) \in D$, then

$$\vec{n} = \frac{\vec{r_u} \times \vec{r_v}}{|\vec{r_u} \times \vec{r_v}|}$$

and

$$\iint_{S} \vec{F} \cdot dS = \iint_{S} \vec{F} \cdot \vec{n} \, dS = \iint_{D} \vec{F} \cdot \frac{\vec{r}_{u} \times \vec{r}_{v}}{|\vec{r}_{u} \times \vec{r}_{v}|} |\vec{r}_{u} \times \vec{r}_{v}| \, dA$$
$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F} \cdot (\vec{r}_{u} \times \vec{r}_{v}) \, dA$$

or

Example 2. Find the flux of the vector field $\vec{F} = x^2y\vec{i} - 3xy^2\vec{j} + 4y^3\vec{k}$ across the surface *S*, if *S* is the part of the elliptic paraboloid $z = x^2 + y^2 - 9$ that lies below the rectangle $0 \le x \le 2, 0 \le y \le 1$ and has downward orientation.

Example 3. A fluid has density 1500 and velocity field

$$\vec{v} = -y\vec{\imath} + x\vec{\jmath} + 2z\vec{k}$$

Find the rate of flow outward through the sphere $x^2 + y^2 + z^2 = 25$.