Chapter 14. Vector calculus. Section 14.8 Stokes' Theorem.

Stokes' Theorem. Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let \vec{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. Then

$$\int_C \vec{F} \cdot d\vec{r} = \iint_S \operatorname{curl} \vec{F} \cdot d\vec{S}$$

The Stokes' Theorem says that the line integral around the boundary curve of S of the tangential component of \vec{F} is equal to the surface integral of the normal component of the curl of \vec{F} .

Example 1. Use Stokes' Theorem to evaluate $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S}$ if $\vec{F}(x, y, z) = \langle xyz, x, e^{xy} \cos(z) \rangle$ and S is hemisphere $x^2 + y^2 + z^2 = 1$, oriented upward.

Example 2. Use Stokes' Theorem to evaluate $\int_C \vec{F} \cdot d\vec{r}$ if $\vec{F}(x, y, z) = \langle z^2, y^2, xy \rangle$ and C is the triangle with vertices (1,0,0), (0,1,0), and (0,0,2) and is oriented counterclockwise as viewed from above.