Chapter 14. Vector calculus. Section 14.9 Divergence Theorem.

Divergence theorem. Let E be a simple solid region whose boundary surface S has positive (outward) orientation. Let \vec{F} be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$\iint_{S} \vec{F} \cdot \vec{S} = \iiint_{E} \operatorname{div} \vec{F} \, dV$$

Example 1. Use the Divergence Theorem to calculate the surface integral $\iint_S \vec{F} \cdot \vec{S}$ if $\vec{F} = \langle ye^{z^2}, y^2, e^{xy} \rangle$ and S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 9$ and the planes z = 0 and z = y - 3.