Midterm Exam I, October 7, 2010

Show all your work neatly and concisely and clearly indicate your final answer. The use of a calculator, laptop or computer is prohibited.

1. [10 pts.] Find an equation of the plane that passes through the points $(-1,2,0),(2,0,1)$, and $(-5,3,1)$.
2. [13 pts.] Find the length of the curve $\vec{r}(t)=<6 t, 3 \sqrt{2} t^{2}, 2 t^{3}>, 0 \leq t \leq 1$.
3. [13 pts.] Find the curvature of the curve $\vec{r}(t)=<t^{2}+2, t^{2}-4 t, 2 t>$.
4. [12 pts.] Let $f(x, y, z)=x+\ln \left(y^{2}+z^{2}\right)$. Find a vector in the direction in which f increases most rapidly at the point $P(2,1,1)$.
5. [12 pts.] Find parametric equations of the normal line to the surface $x y^{2} z^{3}=12$ at the point ($3,2,1$).
6. [12 pts.] Use the differential to estimate

$$
\sqrt{5(1.04)^{2}+4(0.95)^{2}}
$$

7. [13 pts.] Given that $w=5 x^{3} y+x$ where $x=t \tan s, y=t+\ln s$, use the Chain Rule to find $\frac{\partial w}{\partial s}$.
8. [15 pts.] Find the dimensions of the rectangular box with largest volume if the total surface area is given as $64 \mathrm{~cm}^{2}$.

Bonus Problem ([10 pts], no partial credit). The plane $y+z=3$ intersects the cylinder $x^{2}+y^{2}=5$ in an ellipse. Find symmetric equations for the tangent line to this ellipse at the point ($1,2,1$).

