MATH 251-507, 508, 511

Midterm Exam I, October 7, 2010

Show all your work neatly and concisely and clearly indicate your final answer. The use of a calculator, laptop or computer is prohibited.

1. [10 pts.] Find an equation of the plane that passes through the points $(-1,2,0),(2,0,1)$, and $(-5,3,1)$.
SOLUTION. Let $A(-1,2,0), B(2,0,1)$, and $C(-5,3,1)$. Two nonparallel vectors that lie in the plane are

$$
\begin{gathered}
\overrightarrow{A B}=<2-(-1), 0-2,1-0>=<3,-2,1> \\
\overrightarrow{A C}=<-5-(-1), 3-2,1-0>=<-4,1,1>
\end{gathered}
$$

The vector orthogonal to the plane is

$$
\vec{n}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
3 & -2 & 1 \\
-4 & 1 & 1
\end{array}\right|=-3 \vec{\imath}-7 \vec{\jmath}+11 \vec{k}
$$

Thus, the equation of the plane is

$$
-3(x+1)-7(y-2)+11(z-0)=0
$$

or

$$
3 x+7 y-11 z-11=0
$$

2. [13 pts.] Find the length of the curve $\vec{r}(t)=<6 t, 3 \sqrt{2} t^{2}, 2 t^{3}>, 0 \leq t \leq 1$.

SOLUTION. $\vec{r}^{\prime}(t)=<6,6 \sqrt{2} t, 6 t^{2}>=6<1, \sqrt{2} t+t^{2}>$

$$
\left|\overrightarrow{r^{\prime}}(t)\right|=6 \sqrt{1+2 t^{2}+t^{4}}=6 \sqrt{\left(1+t^{2}\right)^{2}}=6\left(1+t^{2}\right)
$$

Then

$$
L=\int_{0}^{1} 6\left(1+t^{2}\right) d t=\left.6\left(t+\frac{t^{3}}{3}\right)\right|_{0} ^{1}=8
$$

3. [13 pts.] Find the curvature of the curve $\vec{r}(t)=\left\langle t^{2}+2, t^{2}-4 t, 2 t>\right.$.

SOLUTION. $\kappa(t)=\frac{\left|\overrightarrow{r^{\prime}} \times \overrightarrow{r^{\prime \prime}}\right|}{\left|\overrightarrow{r^{\prime}}\right|^{3}}$.

$$
\begin{gathered}
\overrightarrow{r^{\prime}}(t)=<2 t, 2 t-4,2>, \quad\left|\overrightarrow{r^{\prime}}(t)\right|=2 \sqrt{t^{2}+(t-2)^{2}+1}=2 \sqrt{2 t^{2}-4 t+5} \\
\overrightarrow{r^{\prime \prime}}(t)=<2,2,0> \\
\overrightarrow{r^{\prime}} \times \overrightarrow{r^{\prime \prime}}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 t & 2 t-4 & 2 \\
2 & 2 & 0
\end{array}\right|=-4 \vec{\imath}+4 \vec{\jmath}+8 \vec{k}=4<-1,1,2> \\
\left|\overrightarrow{r^{\prime}} \times \overrightarrow{r^{\prime \prime}}\right|=4 \sqrt{1+1+4}=4 \sqrt{6}
\end{gathered}
$$

Thus,

$$
\kappa(t)=\frac{4 \sqrt{6}}{8\left(2 t^{2}-4 t+5\right)^{3 / 2}}=\frac{\sqrt{6}}{2\left(2 t^{2}-4 t+5\right)^{3 / 2}}
$$

4. [12 pts.] Let $f(x, y, z)=x+\ln \left(y^{2}+z^{2}\right)$. Find a vector in the direction in which f increases most rapidly at the point $P(2,1,1)$.
SOLUTION. The function f is increasing most rapidly in the direction in ∇f

$$
\begin{gathered}
\nabla f=<1, \frac{2 y}{y^{2}+z^{2}}, \frac{2 z}{y^{2}+z^{2}}> \\
\nabla f(2,1,1)=<1, \frac{2}{2}, \frac{2}{2}>=<1,1,1>
\end{gathered}
$$

5. [12 pts.] Find parametric equations of the normal line to the surface $x y^{2} z^{3}=12$ at the point ($3,2,1$).
SOLUTION. Let $F(x, y, z)=x y^{2} z^{3}-12$. Then

$$
\begin{array}{cl}
\frac{\partial F}{\partial x}=y^{2} z^{3} & \frac{\partial F}{\partial x}(3,2,1)=4 \\
\frac{\partial F}{\partial y}=2 x y z^{3} & \frac{\partial F}{\partial y}(3,2,1)=12 \\
\frac{\partial F}{\partial z}=3 x y^{2} z^{2} & \frac{\partial F}{\partial z}(3,2,1)=36
\end{array}
$$

Thus, parametric equation of the normal line are

$$
x=3+4 t, \quad y=2+12 t \quad z=1+36 t
$$

6. [12 pts.] Use the differential to estimate

$$
\sqrt{5(1.04)^{2}+4(0.95)^{2}}
$$

SOLUTION. $f(a+\Delta x, b+\Delta y) \approx f(a, b)+\frac{\partial f}{\partial x}(a, b) \Delta x+\frac{\partial f}{\partial y}(a, b) \Delta y$

$$
\begin{array}{ll}
f(x, y)=\sqrt{5 x^{2}+4 y^{2}}, \quad a=1, b=1, \quad \Delta x=0.04, \Delta y=-0.05 \\
\frac{\partial f}{\partial x}=\frac{5 x}{\sqrt{5 x^{2}+4 y^{2}}}, \frac{\partial f}{\partial y}=\frac{4 y}{\sqrt{5 x^{2}+4 y^{2}}}, \quad \frac{\partial f}{\partial x}(1,1)=\frac{5}{3}, \frac{\partial f}{\partial y}=\frac{4}{3}
\end{array}
$$

Thus

$$
\sqrt{5(1.04)^{2}+4(0.95)^{2}} \approx f(1,1)+\frac{\partial f}{\partial x}(1,1) \Delta x+\frac{\partial f}{\partial y}(1,1) \Delta y=5+\frac{5}{3}(0.04)+\frac{4}{3}(-0.05)=3
$$

7. [13 pts.] Given that $w=5 x^{3} y+x$ where $x=t \tan s, y=t+\ln s$, use the Chain Rule to find $\frac{\partial w}{\partial s}$.
SOLUTION.

$$
\frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}=\left(15 x^{2} y+1\right) \sec ^{2} s+5 x^{3} \frac{1}{s}
$$

8. [15 pts.] Find the dimensions of the rectangular box with largest volume if the total surface area is given as $64 \mathrm{~cm}^{2}$.
SOLUTION. Let's dimensions of the box are $l \times w \times h$. Then the surface area

$$
A=2(l w+l h+w h)=64
$$

or

$$
l w+l h+w h=32
$$

So,

$$
h=\frac{32-l w}{l+w}
$$

The volume of the box is

$$
\begin{gathered}
V=l w h=l w \frac{32-l w}{l+w}=\frac{32 l w-l^{2} w^{2}}{l+w} \\
\frac{\partial V}{\partial l}=\frac{\left(32 w-2 l w^{2}\right)(l+w)-32 l w+l^{2} w^{2}}{(l+w)^{2}}=\frac{w^{2}\left(32-l^{2}-2 l w\right)}{(l+w)^{2}}=0 \\
\frac{\partial V}{\partial w}=\frac{l^{2}\left(32-w^{2}-2 l w\right)}{(l+w)^{2}}=0
\end{gathered}
$$

Since $l \neq 0$ and $w \neq 0$,

$$
\left\{\begin{array}{l}
32-l^{2}-2 l w=0 \\
32-w^{2}-2 l w=0
\end{array}\right.
$$

If we subtract the second equation from the first equation, we will get

$$
w^{2}-l^{2}=0
$$

or

$$
l=w
$$

Plugging $l=w$ into the first equation gives

$$
32-l^{2}-2 l^{2}=0
$$

or

$$
l=\sqrt{\frac{32}{3}}=w
$$

So,

$$
h=\frac{32-l w}{l+w}=\frac{32-\frac{32}{3}}{2 \sqrt{\frac{32}{3}}}=\frac{32}{3}
$$

Bonus Problem ([10 pts], no partial credit). The plane $y+z=3$ intersects the cylinder $x^{2}+y^{2}=5$ in an ellipse. Find symmetric equations for the tangent line to this ellipse at the point ($1,2,1$).

SOLUTION. Let $F(x, y, z)=y+z-3, G(x, y, z)=x^{2}+y^{2}-5$,

$$
\nabla F(x, y, z)=<0,1,1>, \quad \nabla F(1,2,1)=<0,1,1>
$$

$$
\begin{gathered}
\nabla G(x, y, z)=<2 x, 2 y, 0>, \nabla G(1,2,1)=<2,4,0> \\
\nabla F(1,2,1) \times \nabla G(1,2,1)=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
0 & 1 & 1 \\
2 & 4 & 0
\end{array}\right|=<-4,-2,-2>
\end{gathered}
$$

Thus, symmetric equations for the tangent line to this ellipse at the point $(1,2,1)$ are

$$
\frac{x-1}{-4}=\frac{y-2}{-2}=\frac{z-1}{-2}
$$

or

$$
\frac{x-1}{2}=y-2=z-1
$$

