MATH 251-507, 508, 511

Midterm Exam II, November 18, 2010

Instructions:

- Show all your work neatly and concisely and clearly indicate your final answer.
- Do not simplify the final answer.
- The use of a calculator, laptop or computer is prohibited.

GOOD LUCK!

1. [11 pts.] Sketch the region of integration and change the order of integration for $\int_{0}^{1} \int_{2 x}^{3 x} f(x, y) d y d x$.
2. [16 pts.] Find the area inside one petal of the rose $r=2 \sin (2 \theta)$ outside the circle $r=1$. Sketch the region of integration.
3. [17 pts.] Let E be a solid bounded by the planes $x=0, y=0, z=0$, and $2 x+2 y+z=4$. Sketch the solid E and find its volume.
4. [14 pts.] Consider the integral $\iiint_{E} y^{2} d V$, where E lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$. Sketch the region of integration and convert this integral to spherical coordinates and find the limit of integration. DO NOT EVALUATE.
5. [15 pts.] A particle is moved by the force $\vec{F}(x, y)=y^{2} \vec{\imath}+2 x y \vec{\jmath}$ along the curve $\vec{r}(t)=$ $(2+t) \vec{\imath}+t \vec{\jmath}$ from the point $(2,0)$ to the point $(3,1)$. What is the work done by the force?
6. [15 pts.] For the vector field $\vec{F}(x, y, z)=x \vec{\imath}+e^{y} \sin z \vec{\jmath}+e^{y} \cos z \vec{k}$ find its curl and divergence. If the field \vec{F} is conservative, find the function f such that $\nabla f=\vec{F}$.
7. [12 pts.] Use Green's Theorem to evaluate $\int_{C}\left(e^{\sqrt{x}}-x y^{2}\right) d x+\left(5+\cos \left(y^{3}\right)\right) d y$, where C is the boundary of the region bounded by the parabolas $y=x^{2}$ and $x=y^{2}$ with positive orientation. Sketch the region bounded by the curve C and show the orientation of C.

Bonus Problem ([10 pts], no partial credit).
Find $\operatorname{div}\left(\frac{\vec{r}}{|\vec{r}|}\right)$, if $\vec{r}=\langle x, y, z>$.

