1. A large tank initially contains 10 L of fresh water. A brine containing $20 \mathrm{~g} / \mathrm{L}$ of salt flows into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. The solution inside the tank is kept well stirred and flows out of the tank at re fe rate $\mathrm{L} / \mathrm{min}$. Determine the concentration of salt in the tank as a function of time.

$q(t)$ is the mass of salt in the tank at tine t.
$\frac{d q}{d t}=$ rate in - rate out rate $\mathrm{in}=3(20)$

$$
\text { rate out }=\frac{q(t)}{10+(3-2) t} \cdot 2
$$

$$
\begin{aligned}
& \frac{d q}{d t}=60-\frac{2 q(t)}{10+t} \text { IVA } . \\
& q(0)=0
\end{aligned}
$$

Solve for $g(t)$.
Lo $\frac{q(t)}{10+t}$ concentration

```
3. An object with temperature \(150^{\circ}\) is placed in a freezer whose temperature is \(30^{\circ}\). Assume
    that the temperature of the freezer remains essentially constant.
    (a) If the object is cooled to \(120^{\circ}\) after 8 min, what will its temperature be after 18 min ?
        \(T(t)\)-temperature at time \(t\)
        \(\frac{d T}{d t}=k(30-T) \quad T(0)=150\)
            \(T(8)=120\)
                            Find \(T(18)=\) ?
\(\frac{d T}{d t}=-k(T-30)\)
\(\frac{d T}{T-30}=\)
\(\ln |T-30|=-k t+C\)
            \(T-30=c e^{-k t}\)
            \(T=30+C e^{-k t}\)
                    \(30+c=150\)
                        \(c=120\)
                    \(T(t)=30+120 e^{-6 t}\)
                    Solve for \(k\)
\(T(8)=30+120 e^{-8 k}=120\)
                    \(e^{-d t}=\frac{3}{4}\)
                \(z=-\frac{1}{8} \ln \left(\frac{3}{4}\right) \approx 0.036\)
                \(T(t)=30+120 e^{-0.036 t}\)
                \(T(18)=\).
```

Title : Feb 11-9:41 AM (Page 5 of 16)
(b) When will its temperature be 60° ?
find t sech that $T(t)=60$

Title : Oct 2-2:08 PM (Page 2 of 16)
4. Determine (without solving the problem) an interval in which the solution to the initial value problem

$$
\left(4-t^{2}\right) y^{\prime}+2 t y=3 t^{2}, \quad y(1)=-3
$$

is certain to exist.

$$
(-2,2)
$$

$$
y^{\prime}+\frac{2 t}{4-t^{2}} y=\left(\frac{3 t^{2}}{4-t^{2}}\right)
$$

continuous if $t \neq \pm 2$

5. Solve the initial value problem

$$
y^{\prime}=\frac{t^{2}}{1+t^{3}}, \quad y(0)=y_{0}
$$

and determine how the interval in which the solution exists depends on the initial value
y_{0}.

$$
\begin{aligned}
& f(t, y)=\frac{t^{2}}{1+t^{3}} \quad \text { continuous if } \quad t \neq-1 \\
& \frac{\partial f}{\partial y}=0 \\
& y^{\prime}=\frac{t^{2}}{1+t^{3}}, y\left(t_{0}\right)=y_{0} \\
& \text { if } t_{0}>-1, \quad(-1, \infty) \\
& \text { if } t_{0}<-1, \quad(-\infty,-1) \\
& 0>-1, \text { so }(-1, \infty) \text { does not } \\
& \text { depend on } y o \\
& \text { solve the initial value problem. } \\
& \frac{d y}{d t}=\frac{t^{2}}{1+t^{3}} \\
& d y=\frac{t^{2}}{1+t^{3}} d t \\
& y(t)=\frac{1}{3} \ln \left|1+t^{3}\right|+C \\
& y(0)=c=y_{0} \\
& y(t)=\frac{1}{3} \ln / 1+t^{3} /+y_{0} \text { exams exorytwhere }
\end{aligned}
$$

6. Solve the following initial value problem

$$
\sqrt{y} d t+(1+t) d y=0 \quad y(0)=1
$$

7. Find the general solution to the equation

$$
\begin{aligned}
& \left(t^{2}-1\right) y^{\prime}+2 t y+3=0 \\
& y^{\prime}+\frac{2 t}{t^{2}-1} \quad y=-\frac{3}{t^{2}-1} \\
& p(t)=\frac{2 t}{t^{2}-1} ; \quad q(t)=-\frac{3}{t^{2}-1}
\end{aligned}
$$

Integrating factor:

$$
\begin{aligned}
& \frac{d \mu(t)}{d t}=+\frac{2 t \mu}{t^{2}-1} \\
& \frac{d \mu}{\mu}=\frac{2 t}{t^{2}-1} d t \\
& \mu(t)=t^{2}-1 \\
&\left(t^{2}-1\right) y(t)=\int-\frac{3}{t^{2}-1}\left(t^{2}-1\right) d t \\
&=-3 t+C \\
& y(t)=-\frac{3 t}{t^{2}-1}+\frac{c}{t^{2}-1}
\end{aligned}
$$

Given the differential equation

$$
\frac{d y}{d t}=7 y-y^{2}-10
$$

(a) Find the equilibrium solutions.
(b) Sketch the phase line and determine whether the equilibrium solutions are stable, unstable, or semistable.

Ba)

$$
\begin{gathered}
7 y-y^{2}-10=0 \\
y^{2}-7 y+10=0 \\
(y-5)(y-2)=0 \\
y_{1}=2 \quad \text { unstable } \\
y_{2}=5 \quad \text { stable }
\end{gathered}
$$

$$
\begin{aligned}
& f(0)=-10<0 \\
& f(3)=21-9-10>0 \\
& f(7)=49-49-10<0
\end{aligned}
$$

8. Solve the initial value problem

$$
\left(u v v^{\prime}\right)^{\prime}=u^{\prime} v w+u v^{\prime} w+u v v^{\prime}
$$

$$
\begin{aligned}
& (\underbrace{\left(y e^{x y} \cos (2 x)-2 e^{x y} \sin (2 x)+2 x\right)}_{M(x, y)} d x+\underbrace{\left(x e^{x y} \cos (2 x)-3\right)}_{N(x, y)} d y=0, \quad y(0)=-1 \\
& M_{y}=e^{x y} \cos (2 x)+x y e^{x y} \cos (2 x)-2 x e^{x y} \sin (2 x) \\
& \begin{array}{r}
N_{x}=e^{x y} \cos (2 x)+x y e^{x y} \cos (2 x)-2 \sin (2 x) x e^{x y} \\
\text { Exact }
\end{array} \\
& \left\{\begin{array}{l}
\left.\frac{\partial F}{\partial x}=y e^{x y} \cos (2 x)-2 e^{x y} \sin / 2 x\right)+2 x \\
\frac{\partial F}{\partial y} d y=\int\left(x e^{x y} \cos (2 x)-3\right) d y \\
P(x y)=x \frac{1}{x} e^{x y} \cos (2 x)-3 y+h(x)
\end{array}\right. \\
& =e^{x y} \cos (2 x)-3 y+h(x) \\
& \frac{\partial F}{\partial x}=\left(y e^{x y} \cos (2 x)-2 e^{x y} \sin (2 x)+h^{\prime}(x)\right. \\
& h^{\prime}(x)=2 x \text { or } h(x)=x^{2}+C \\
& F(x, y)=e^{x y} \cos (2 x)-3 y+x^{2}+C \\
& \text { General solution: } e^{x y} \cos (2 x)-3 y+x^{2}+c=0
\end{aligned}
$$

$y(0)=-1$. Plug $y=-1$ and $x=0$ into the general solution:

$$
\begin{gathered}
e^{(0)} \cos (0)-3(-1)+0+c=0 \\
c=-4 \\
e^{x y} \cos (2 x)-3 y+x^{2}-4=0
\end{gathered}
$$

9. Find an integrating factor for the equation
$\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0$
$\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0$
and then solve the equation.

$$
\begin{aligned}
\frac{M_{y}-N_{x}}{N(x, y)} & =\frac{3 x+2 y-(2 x+y)}{x^{2}+x y} \\
& =\frac{x+y}{x(x+y)} \\
& =\frac{1}{x} \text { (depends ox } x \text { only) }
\end{aligned}
$$

$$
\begin{array}{crl}
\text { Integrating } & \frac{d \mu}{d x} & =\frac{\mu}{x} \\
\text { factor: } & \frac{d \mu}{\mu} & =\frac{d x}{x} \\
& & \mu(x)=x
\end{array}
$$

$$
\underbrace{\left(3 x^{2} y+x y^{2}\right)}_{M(x, y)} d x+\underbrace{\left(x^{3}+x^{2} y\right)}_{N(x, y)} d y=0
$$

$$
M_{y}=3 x^{2}+2 x y
$$

$$
N_{x}=3 x^{2}+2 x y
$$

$$
\int \frac{\partial F}{\partial x}=3 x^{2} y+x y^{2}
$$

$$
\int \frac{\partial F}{\partial y} d y=\int x^{3}+x^{2} y d y
$$

$$
F(x, y)=x^{3} y+\frac{x^{2} y^{2}}{y_{2}}+h(x)
$$

$$
\frac{\partial F}{\partial x}=3 x^{2} y+x y^{2}+h^{\prime}(x)
$$

$$
h^{\prime}(x)=0 \text { or } h(x)=c
$$

$$
F(x, y)=x^{3} y+\frac{x^{2} y^{2}}{2}+C
$$

$$
\text { General solution: } x^{3} y+\frac{x^{2} y^{2}}{y_{2}}+c=0 \quad y=0
$$

10. Solve the initial value problem

$$
6 y^{\prime \prime}-5 y^{\prime}+y=0, \quad y(0)=4, y^{\prime}(0)=0
$$

11. Find the general solution to the equation

$$
\begin{aligned}
& \quad 4 y^{\prime \prime}-12 y^{\prime}+9 y=0 \\
& 4 r^{2}-12 r+9=0 \\
& (2 r-3)^{2}=0 \\
& r=\frac{3}{2} \text { repeated root }
\end{aligned}
$$

General solution:

$$
y(t)=\left(c_{1}+c_{2} t\right) e^{\frac{3}{2} t}
$$

$$
\begin{aligned}
& \text { 1. The Existence and Uniqueness Theorem guarantees that the solution to } \\
& x^{3} y^{\prime \prime}+\frac{x}{\sin x} y^{\prime}-\frac{2}{x-5} y=0, \quad y(2)=6, \quad y^{\prime}(2)=7 \\
& \text { uniquely exists on } \\
& \text { (a) }(-\pi, \pi) \\
& \text { (b) }(0, \pi) \\
& \text { (c) }(5, \infty) \\
& \text { (d) }(0,5) \\
& \begin{array}{l}
\begin{array}{l}
y^{\prime \prime}+p(x) y^{\prime}+g(x) y=g(x) \\
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
\end{array} \\
\text { The initial value problem } \\
\text { has a unigue solution on }
\end{array} \\
& \text { - Pig, and g are contivuous on I, } \\
& \text { - } x_{0} \text { if if } I \\
& \frac{x^{3} y^{\prime \prime}+\frac{x}{\sin x} y^{\prime}-\frac{2}{x-5} y=0}{x^{3}} \\
& y^{\prime \prime}+\frac{1}{x^{2} \sin x} y^{\prime}-\frac{2}{x^{2}(x-5)} y=0 \\
& p(x)=\frac{1}{x^{2} \sin x} \\
& \begin{aligned}
p \text { is continuocy if } \quad & x \neq 0 \\
(\sin x \neq 0) & x \neq \pi n, n=0, \pm 1, \pm 2
\end{aligned} \\
& f(x)=-\frac{2}{x^{2}(x-5)} \\
& \text { of if continuous if } \begin{array}{l}
x \neq 0 \\
x \neq 5
\end{array} \\
& \begin{array}{cccccc}
0 & 0 & \text { of } & +b & 0 & 0 \\
-2 \pi & -\pi & 0 & 2 \pi & 5 & 2 \pi
\end{array}
\end{aligned}
$$

Title : Oct 2-2:13 PM (Page 12 of 16)
10. The Wronskian of two functions $y_{1}(x)=x+2 x^{2}$ an $y_{2}(x)=2^{x}$ is
(a) $2^{x}(1+4 x-x(1+2 x))$
(b) $-2^{x}(1+4 x-x \ln 2(1+2 x))$
(c) $(1+4 x-x(1+2 x))$
(d) $2^{x}(1+2 x-x \ln 2(1+4 x))$

$$
\begin{array}{r}
w\left[y_{11} y_{2}\right]=\left|\begin{array}{cc}
x+2 x^{2} & 2^{x} \\
1+4 x & 2^{x} \ln 2
\end{array}\right| \\
=2^{x} \ln 2\left(x+2 x^{2}\right)-2^{x}(1+4 x) \\
=2^{x}\left(\ln 2\left(x+2 x^{2}\right)-1-4 x\right)
\end{array}
$$

14. Find the general solution of the equation/solve the initial value problem
(a) $y^{\prime \prime}+6 y^{\prime}+9 y=t \cos (2 t)$
15. Find a general solution to the equation

$$
\begin{aligned}
& 4 y^{\prime \prime}+y^{\prime}=4 x^{3}+48 x^{2}+1 \\
& \begin{array}{c}
\text { homogeneows eqn. } \\
4 y^{\prime \prime}+y^{\prime}=0
\end{array} \\
& 4 r^{2}+r=0 \\
& r(4 r+1)=0 \\
& r_{1}=0, \quad r_{2}=-1 / 4 \\
& y_{h}(x)=c_{1}+c_{2} e^{-\frac{1}{4} x} \\
& y_{p}(x)=x\left(A x^{3}+B x^{2}+C x+\infty\right) \\
& =A x^{4}+B x^{3}+C x^{2}+D x \\
& y_{p}^{\prime}=4 A x^{3}+3 B x^{2}+2 C x+D \\
& y_{p}^{\prime \prime}=12 A x^{2}+6 B x+2 C \\
& 4\left(12 A x^{2}+6 B x+2 C\right)+4 A x^{3}+3 B x^{2}+2 C x+D=4 x^{3}+48 x^{2}+1 \\
& x^{3}: 4 A=4 \quad A=1 \\
& \begin{array}{rl}
x^{2}: 48 A+3 B=48 & 3 B
\end{array}=48-48 \\
& x: 24 B+2 C=0 \quad C=0 \\
& 1: 8 C+D=1 \quad \phi=1 \\
& y_{p}(x)=x^{4}+x \\
& y(t)=c_{1}+c_{2} e^{-\frac{1}{4} x}+x^{4}+x
\end{aligned}
$$

Title : Oct 2-2:14 PM (Page 15 of 16)
(c) $y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t}, y(0)=2, y^{\prime}(0)=1$

