1. Find the general solution of the equation $y^{\prime \prime}+6 y^{\prime}+9 y=\frac{e^{-3 x}}{1+2 x}$
2. A mass weighing 3 lb stretches a spring 3 in . If the mass is pushed upward, contracting the spring a distance of 1 in . then set in motion with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period and amplitude of the motion.
3. A mass weighting 8 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At $t=0$, an external force $F(t)=2 \cos 2 t \mathrm{lb}$ is applied to the system. If the spring constant is $10 \mathrm{lb} / \mathrm{ft}$ and the damping constant is $1 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$, find the steady-state solution for the system. What is the resonance frequency for the system?
4. Find the Laplace transform of the given function.
(a) $f(t)= \begin{cases}\frac{t}{2}, & 0 \leq t<6 \\ 3, & t \geq 6\end{cases}$
(b) $f(t)=\left(t^{2}-2 t+2\right) u_{1}(t)$
(c) $f(t)=\int_{0}^{t}(t-\tau)^{2} \cos 2 \tau d \tau$
(d) $f(t)=t \cos 3 t$
(e) $f(t)=e^{t} \delta(t-1)$
5. Find the inverse Laplace transform of the given function.
(a) $F(s)=\frac{2 s+6}{s^{2}-4 s+8}$
(b) $F(s)=\frac{e^{-2 s}}{s^{2}+s-2}$
6. Solve the initial value problem using the Laplace transform:
(a) $y^{\prime \prime}+4 y=\left\{\begin{array}{ll}t, & 0 \leq t<1 \\ 1, & t \geq 1\end{array}, y(0)=y^{\prime}(0)=0\right.$
(b) $y^{\prime \prime}+2 y^{\prime}+3 y=\delta(t-3 \pi), y(0)=y^{\prime}(0)=0$
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=g(t), y(0)=2, y^{\prime}(0)=-3$
7. Find A^{-1} if $A=\left(\begin{array}{rr}1+i & -1+2 i \\ 3+2 i & 2-i\end{array}\right)$
8. Find $B A$ if $A=\left(\begin{array}{rr}1+i & -1+2 i \\ 3+2 i & 2-i\end{array}\right), B=\left(\begin{array}{rr}i & 3 \\ 2 & -2 i\end{array}\right)$
9. Find all eigenvalues and eigenvectors of the martix

$$
\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

10. Find the general solution of the system
(a) $\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}+x_{2} \\ x_{2}^{\prime}=4 x_{1}-2 x_{2}\end{array}\right.$
(b) $\left\{\begin{array}{l}x_{1}^{\prime}=2 x_{2}-3 x_{1} \\ x_{2}^{\prime}=-x_{1}-x_{2}\end{array}\right.$
