Chapter 4. Linear Second Order Equations

Section 4.2 Linear Differential Operators

A linear second order equation is an equation that can be written in the form

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = b(x).$$
(1)

We will assume that $a_0(x)$, $a_1(x)$, $a_2(x)$, b(x) are continuous functions of x on an interval I. When a_0 , a_1 , a_2 , b are constants, we say the equation has **constant coefficients**, otherwise it has **variable coefficients**.

For now, we are interested in those linear equations for which $a_2(x)$ is never zero on I. In that case we can rewrite (1) in the **standard form**

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = g(x),$$
(2)

where $p(x) = a_1(x)/a_2(x)$, $q(x) = a_0(x)/a_2(x)$ and $g(x) = b(x)/a_2(x)$ are continuous on *I*. Associated with equation (2) is the equation

$$y'' + p(x)y' + q(x)y = 0,$$
(3)

which is obtained from (2) by replacing g(x) with zero. We say that equation (2) is a **nonhomogeneous equation** and that (3) is the corresponding **homogeneous equation**.

$$L[y] = y''(x) + p(x)y'(x) + q(x)y(x).$$
(4)

Lemma 1. Let L[x] = y''(x) + p(x)y'(x) + q(x)y(x). If y, y_1 , and y_2 are any twicedifferentiable functions on the interval I and if c is any constant, then

$$L[y_1 + y_2] = L[y_1] + L[y_2],$$
(5)

$$L[cy] = cL[y]. (6)$$

Theorem 1 (linear combination of solutions). Let y_1 and y_2 be solutions to the homogeneous equation (3). Then any linear combination $C_1y_1 + C_2y_2$ of y_1 and y_2 , where C_1 and C_2 are constants, is also the solution to (3).

There are *basic differentiation operators* with respect to x:

$$Dy = \frac{dy}{dx}, \quad D^2y = \frac{d^2y}{dx^2}, \dots, D^ny = \frac{d^ny}{dx^n}.$$

Using these operators we can express L defined in (4) as

$$L[y] = D^2y + pDy + qy = (D^2 + pD + q)y.$$

When p and q are *constants*, we can even treat $D^2 + pD + q$ as a polynomial in D and factor it.

Example 1. Express the operator

$$x^2y'' - xy' + y$$

using the differential operator D.

Theorem 2 (existence and uniqueness of solution). Suppose p(x), q(x), and g(x) are continuous on some interval (a, b) that contains the point x_0 . Then, for any choice of initial values y_0 , y_1 there exists a unique solution y(x) on the whole interval (a, b) to the initial value problem

$$y'' + p(x)y' + q(x)y = g(x),$$

 $y(x_0) = y_0, y'(0) = y_1.$

Example 2. Find the largest interval for which Theorem 2 ensures the existence and uniqueness of solution to the initial value problem

$$e^{x}y'' - \frac{y'}{x-3} + y = \ln x,$$

 $y(1) = y_{0}, \quad y'(1) = y_{1},$

where y_0 and y_1 are real constants.

Section 4.3. Fundamental solutions of homogeneous equations

Theorem 3. Let y_1 and y_2 denote two solutions on I to

$$y'' + p(x)y' + q(x)y = 0,$$
(7)

where p(x) and q(x) are continuous on *I*. Suppose at some point $x_0 \in I$ these solutions satisfy

$$y_1(x_0)y_2'(x_0) - y_1'(x_0)y_2(x_0) \neq 0.$$
(8)

Then every solution to (7) on I can be expressed in the form

$$y(x) = C_1 y_1(x) + C_2 y_2(x), (9)$$

where C_1 and C_2 are constants.

Definition 1. For any two differentiable functions y_1 and y_2 , the determinant

$$W[y_1, y_2](x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = y_1(x)y'_2(x) - y'_1(x)y_2(x)$$

is called the **Wronskian** of y_1 and y_2 .

Definition 2. A pair of solutions $\{y_1, y_2\}$ to y'' + p(x)y' + q(x)y = 0 on I is called **fundamental solution set** if

$$W[y_1, y_2](x_0) \neq 0$$

at some $x_0 \in I$.

Procedure for solving homogeneous equations

To determine all solutions to y'' + p(x)y' + q(x)y = 0:

(a) Find two solutions y_1 and y_2 that constitute a fundamental solution set.

(b) Form the linear combination

$$y(x) = C_1 y_1(x) + C_2 y_2(x),$$

to obtain the general solution.

Definition 3. Two functions y_1 and y_2 are said to be **linearly dependent on I** if there exist constants C_1 and C_2 , not both zero, such that

$$C_1 y_1(x) + C_2 y_2(x) = 0$$

for all $x \in I$. If two functions are not linearly dependent, they are said to be **linearly** independent.

Example 3. Determine whether the following pairs of functions y_1 and y_2 are linearly dependent on [-3, 3].

(a) $y_1(x) = e^{-x} \cos 2x, \ y_1(x) = e^{-x} \sin 2x.$ (b) $y_1(x) = \sin 2x, \ y_2(x) = \sin x \cos x.$

(c)
$$y_1(x) = x, y_2(x) = |x|.$$

Theorem 4. Let y_1 and y_2 be solutions to the equation y'' + p(x)y' + q(x)y = 0 on I, and let $x_0 \in I$. Then y_1 and y_2 are linearly dependent on I if and only if the constant vectors

$$\begin{pmatrix} y_1(x_0)\\ y'_1(x_0) \end{pmatrix}$$
 and $\begin{pmatrix} y_2(x_0)\\ y'_2(x_0) \end{pmatrix}$

are linearly dependent.

Corollary 1. If y_1 and y_2 are solutions to y'' + p(x)y' + q(x)y = 0 on *I*, then the following statements are equivalent:

- (i) $\{y_1, y_2\}$ is a fundamental solution set on *I*.
- (ii) y_1 and y_2 are linearly independent on I.
- (iii) $W[y_1, y_2]$ is never zero on I.

Example 4. Show that $y_1(x) = x^2$ and $y_2(x) = \frac{1}{x}$ are solutions to

$$x^2y'' - 2y = 0$$

on the interval $(0, +\infty)$ and give a general solutions.