Chapter 4. Linear Second Order Equations

Section 4.2 Linear Differential Operators

A linear second order equation is an equation that can be written in the form

$$
\begin{equation*}
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x) . \tag{1}
\end{equation*}
$$

We will assume that $a_{0}(x), a_{1}(x), a_{2}(x), b(x)$ are continuous functions of x on an interval I. When a_{0}, a_{1}, a_{2}, b are constants, we say the equation has constant coefficients, otherwise it has variable coefficients.

For now, we are interested in those linear equations for which $a_{2}(x)$ is never zero on I. In that case we can rewrite (1) in the standard form

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=g(x) \tag{2}
\end{equation*}
$$

where $p(x)=a_{1}(x) / a_{2}(x), q(x)=a_{0}(x) / a_{2}(x)$ and $g(x)=b(x) / a_{2}(x)$ are continuous on I.
Associated with equation (2) is the equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \tag{3}
\end{equation*}
$$

which is obtained from (2) by replacing $g(x)$ with zero. We say that equation (2) is a nonhomogeneous equation and that (3) is the corresponding homogeneous equation.

$$
\begin{equation*}
L[y]=y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x) . \tag{4}
\end{equation*}
$$

Lemma 1. Let $L[x]=y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)$. If y, y_{1}, and y_{2} are any twicedifferentiable functions on the interval I and if c is any constant, then

$$
\begin{gather*}
L\left[y_{1}+y_{2}\right]=L\left[y_{1}\right]+L\left[y_{2}\right], \tag{5}\\
L[c y]=c L[y] . \tag{6}
\end{gather*}
$$

Theorem 1 (linear combination of solutions). Let y_{1} and y_{2} be solutions to the homogeneous equation (3). Then any linear combination $C_{1} y_{1}+C_{2} y_{2}$ of y_{1} and y_{2}, where C_{1} and C_{2} are constants, is also the solution to (3).

There are basic differentiation operators with respect to x :

$$
D y=\frac{d y}{d x}, \quad D^{2} y=\frac{d^{2} y}{d x^{2}}, \ldots, D^{n} y=\frac{d^{n} y}{d x^{n}}
$$

Using these operators we can express L defined in (4) as

$$
L[y]=D^{2} y+p D y+q y=\left(D^{2}+p D+q\right) y .
$$

When p and q are constants, we can even treat $D^{2}+p D+q$ as a polynomial in D and factor it.

Example 1. Express the operator

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y
$$

using the differential operator D.

Theorem 2 (existence and uniqueness of solution). Suppose $p(x), q(x)$, and $g(x)$ are continuous on some interval (a, b) that contains the point x_{0}. Then, for any choice of initial values y_{0}, y_{1} there exists a unique solution $y(x)$ on the whole interval (a, b) to the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x), \\
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}(0)=y_{1} .
\end{gathered}
$$

Example 2. Find the largest interval for which Theorem 2 ensures the existence and uniqueness of solution to the initial value problem

$$
\begin{aligned}
& \mathrm{e}^{x} y^{\prime \prime}-\frac{y^{\prime}}{x-3}+y=\ln x, \\
& y(1)=y_{0}, \quad y^{\prime}(1)=y_{1},
\end{aligned}
$$

where y_{0} and y_{1} are real constants.

Section 4.3. Fundamental solutions of homogeneous equations

Theorem 3. Let y_{1} and y_{2} denote two solutions on I to

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \tag{7}
\end{equation*}
$$

where $p(x)$ and $q(x)$ are continuous on I. Suppose at some point $x_{0} \in I$ these solutions satisfy

$$
\begin{equation*}
y_{1}\left(x_{0}\right) y_{2}^{\prime}\left(x_{0}\right)-y_{1}^{\prime}\left(x_{0}\right) y_{2}\left(x_{0}\right) \neq 0 . \tag{8}
\end{equation*}
$$

Then every solution to (7) on I can be expressed in the form

$$
\begin{equation*}
y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x), \tag{9}
\end{equation*}
$$

where C_{1} and C_{2} are constants.

Definition 1. For any two differentiable functions y_{1} and y_{2}, the determinant

$$
W\left[y_{1}, y_{2}\right](x)=\left|\begin{array}{ll}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right|=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)
$$

is called the Wronskian of y_{1} and y_{2}.
Definition 2. A pair of solutions $\left\{y_{1}, y_{2}\right\}$ to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ on I is called fundamental solution set if

$$
W\left[y_{1}, y_{2}\right]\left(x_{0}\right) \neq 0
$$

at some $x_{0} \in I$.

Procedure for solving homogeneous equations

To determine all solutions to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$:
(a) Find two solutions y_{1} and y_{2} that constitute a fundamental solution set.
(b) Form the linear combination

$$
y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x),
$$

to obtain the general solution.
Definition 3. Two functions y_{1} and y_{2} are said to be linearly dependent on \mathbf{I} if there exist constants C_{1} and C_{2}, not both zero, such that

$$
C_{1} y_{1}(x)+C_{2} y_{2}(x)=0
$$

for all $x \in I$. If two functions are not linearly dependent, they are said to be linearly independent.

Example 3. Determine whether the following pairs of functions y_{1} and y_{2} are linearly dependent on $[-3,3]$.
(a) $y_{1}(x)=\mathrm{e}^{-x} \cos 2 x, y_{1}(x)=\mathrm{e}^{-x} \sin 2 x$.
(b) $y_{1}(x)=\sin 2 x, y_{2}(x)=\sin x \cos x$.
(c) $y_{1}(x)=x, y_{2}(x)=|x|$.

Theorem 4. Let y_{1} and y_{2} be solutions to the equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ on I, and let $x_{0} \in I$. Then y_{1} and y_{2} are linearly dependent on I if and only if the constant vectors

$$
\binom{y_{1}\left(x_{0}\right)}{y_{1}^{\prime}\left(x_{0}\right)} \quad \text { and } \quad\binom{y_{2}\left(x_{0}\right)}{y_{2}^{\prime}\left(x_{0}\right)}
$$

are linearly dependent.
Corollary 1. If y_{1} and y_{2} are solutions to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ on I, then the following statements are equivalent:
(i) $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set on I.
(ii) y_{1} and y_{2} are linearly independent on I.
(iii) $W\left[y_{1}, y_{2}\right]$ is never zero on I.

Example 4. Show that $y_{1}(x)=x^{2}$ and $y_{2}(x)=\frac{1}{x}$ are solutions to

$$
x^{2} y^{\prime \prime}-2 y=0
$$

on the interval $(0,+\infty)$ and give a general solutions.

