Chapter 4. Linear Second Order Equations

Section 4.4 Reduction of Order

A general solution to a linear second order homogeneous equation is given by a linear combination of two linearly independent solutions.

Let f be nontrivial solution to equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

Let's try to find solution of the form

$$
y(x)=v(x) f(x),
$$

where $v(x)$ is an unknown function. Differentiating, we have

$$
\begin{gathered}
y^{\prime}=v^{\prime} f+v f^{\prime}, \\
y^{\prime \prime}=v^{\prime \prime} f+2 v^{\prime} f^{\prime}+v f^{\prime \prime} .
\end{gathered}
$$

Substituting these expression into equation gives

$$
v^{\prime \prime} f+2 v^{\prime} f^{\prime}+v f^{\prime \prime}+p\left(v^{\prime} f+v f^{\prime}\right)+q v f=0
$$

or

$$
\left(f^{\prime \prime}+p f^{\prime}+q f\right) v+f v^{\prime \prime}+\left(2 f^{\prime}+p f\right) v^{\prime}=0 .
$$

Since f is the solution,

$$
f v^{\prime \prime}+\left(2 f^{\prime}+p f\right) v^{\prime}=0
$$

Let's $w(x)=v^{\prime}(x)$, then we have

$$
f w^{\prime}+\left(2 f^{\prime}+p f\right) w=0
$$

separating the variables and integrating gives

$$
\begin{aligned}
\frac{d w}{w} & =\left(-2 \frac{f^{\prime}}{f}-p\right) d x \\
\int \frac{d w}{w} & =-2 \int \frac{f^{\prime}}{f} d x-\int p d x \\
\ln |w| & =\ln \left|f^{-2}\right|-\int p d x \\
w & = \pm \frac{\mathrm{e}^{\int p d x}}{f^{2}}
\end{aligned}
$$

which holds on any interval where $f(x) \neq 0$.

$$
\begin{gathered}
v^{\prime}= \pm \frac{\mathrm{e}^{\int p d x}}{f^{2}} \\
v= \pm \int \frac{\mathrm{e}^{\int p(x) d x}}{[f(x)]^{2}} .
\end{gathered}
$$

Examples.

(a) Given that $f(x)=\mathrm{e}^{3 x}$ is a solution to

$$
y^{\prime \prime}+2 y^{\prime}-15 y=0
$$

determine the second linear independent solution.
SOLUTION Let $y(x)=v(x) f(x)=v(x) \mathrm{e}^{3 x}$, then

$$
\begin{gathered}
y^{\prime}(x)=\left(v^{\prime}+3 v\right) \mathrm{e}^{3 x} \\
y^{\prime \prime}(x)=\left(v^{\prime \prime}+6 v^{\prime}+9 v\right) \mathrm{e}^{3 x} .
\end{gathered}
$$

Substituting these representations into equation gives

$$
\left(v^{\prime \prime}+6 v^{\prime}+9 v\right) \mathrm{e}^{3 x}+2\left(v^{\prime}+3 v\right) \mathrm{e}^{3 x}-15 v \mathrm{e}^{3 x}=0
$$

which simplifies to

$$
v^{\prime \prime}+8 v^{\prime}=0
$$

Let $w(x)=v^{\prime}(x)$, then $w^{\prime}(x)=v^{\prime \prime}(x), w^{\prime}=\frac{d w}{d x}$ and

$$
\frac{d w}{d x}+8 w=0
$$

Separation the variables and integrating gives

$$
\begin{aligned}
\frac{d w}{w} & =-8 d x \\
\int \frac{d w}{w} & =-\int 8 d x \\
\ln |w| & =-8 x+C \\
w & =C_{1} \mathrm{e}^{-8 x}
\end{aligned}
$$

where $C_{1}=\mathrm{e}^{C}$.
Since $w(x)=v^{\prime}(x)$,

$$
\begin{gathered}
v^{\prime}=w=C_{1} \mathrm{e}^{-8 x} \\
v=-\frac{C_{1}}{8} \mathrm{e}^{-8 x}+C_{2}=C_{3} \mathrm{e}^{-8 x}+C_{2}
\end{gathered}
$$

Then the general solution to the given equation is $y(x)=\left(C_{3} \mathrm{e}^{-8 x}+C_{2}\right) \mathrm{e}^{3 x}=C_{3} \mathrm{e}^{-5 x}+C_{2} \mathrm{e}^{3 x}$.
(b) Given that $f(x)=\frac{1}{x}$ is a solution to

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=0, \quad x>0
$$

determine the second linear independent solution.
SOLUTION Let $y(x)=v(x) f(x)=\frac{v(x)}{x}$, then

$$
\begin{gathered}
y^{\prime}=\frac{v^{\prime} x-v}{x^{2}}=\frac{v^{\prime}}{x}-\frac{v}{x^{2}}, \\
y^{\prime \prime}=\frac{v^{\prime \prime} x-v^{\prime}}{x^{2}}-\frac{v^{\prime} x^{2}-2 x v}{x^{4}}=\frac{v^{\prime \prime}}{x}-2 \frac{v^{\prime}}{x^{2}}-2 \frac{v}{x^{3}} .
\end{gathered}
$$

Substituting these representations into equation gives

$$
\begin{gathered}
x^{2}\left(\frac{v^{\prime \prime}}{x}-2 \frac{v^{\prime}}{x^{2}}-2 \frac{v}{x^{3}}\right)-2 x\left(\frac{v^{\prime}}{x}-\frac{v}{x^{2}}\right)-4 \frac{v(x)}{x}=0, \\
x v^{\prime \prime}-4 v^{\prime}=0 .
\end{gathered}
$$

Let $w(x)=v^{\prime}(x)$, then $w^{\prime}(x)=v^{\prime \prime}(x), w^{\prime}=\frac{d w}{d x}$ and

$$
x w^{\prime}-4 w=0 .
$$

Separation the variables and integrating gives

$$
\begin{gathered}
\frac{d w}{w}=4 \frac{d x}{x} \\
\int \frac{d w}{w}=4 \int \frac{d x}{x} \\
w=C x^{4} \\
v=C \frac{x^{5}}{5}+C_{1}=C_{2} x^{5}+C_{1}
\end{gathered}
$$

Then the general solution to the given equation is

$$
y(x)=\left(C_{2} x^{5}+C_{1}\right) \frac{1}{x}=C_{2} x^{4}+C_{1} \frac{1}{x}
$$

(c) The equation

$$
x y^{\prime \prime \prime}-x y^{\prime \prime}+y^{\prime}-y=0
$$

has $f(x)=\mathrm{e}^{x}$ as a solution. Use the substitution $y(x)=v(x) f(x)$ to reduce this third order equation to a second order equation.

SOLUTION Let $y(x)=v(x) f(x)=v(x) \mathrm{e}^{x}$, then

$$
\begin{gathered}
y^{\prime}(x)=\left(v^{\prime}+v\right) \mathrm{e}^{x} \\
y^{\prime \prime}(x)=\left(v^{\prime \prime}+2 v^{\prime}+v\right) \mathrm{e}^{x} \\
y^{\prime \prime \prime}(x)=\left(v^{\prime \prime \prime}+3 v^{\prime \prime}+3 v^{\prime}+v\right) \mathrm{e}^{x} .
\end{gathered}
$$

Substituting these representations into equation gives

$$
\begin{gathered}
x\left(v^{\prime \prime \prime}+3 v^{\prime \prime}+3 v^{\prime}+v\right) \mathrm{e}^{x}-x\left(v^{\prime \prime}+2 v^{\prime}+v\right) \mathrm{e}^{x}+\left(v^{\prime}+v\right) \mathrm{e}^{x}-v \mathrm{e}^{x}=0 \\
x v^{\prime \prime \prime}+2 x v^{\prime \prime}+(x+1) v^{\prime}=0 .
\end{gathered}
$$

Let $w(x)=v^{\prime}(x)$, then for w we will have the second order linear differential equation

$$
x w^{\prime \prime}+2 x w^{\prime}+(x+1) w=0 .
$$

