Chapter 4. Linear Second Order Equations

Section 4.5 Homogeneous Linear Equations with Constant Coefficients

For the equation

$$ay'' + by' + cy = 0, (1)$$

where a, b, c are constants, we try to find a solution of the form $y = e^{rx}$. If we substitute $y = e^{rx}$ into (1), we obtain

$$(ar^2 + br + c)e^{rx} = 0.$$

Since e^{rx} is never zero,

$$ar^2 + br + c = 0.$$
 (2)

Consequently, $y = e^{rx}$ is a solution to (1) if an only if r satisfies (2). Equation (2) is called the **auxiliary equation** or **characteristic equation** associated with equation (1).

So, the equation (2) is a quadratic, and its roots are:

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

When $\sqrt{\mathbf{b}^2 - 4\mathbf{ac}} > \mathbf{0}$, then $r_1, r_2 \in \mathbf{R}$ and $r_1 \neq r_2$. So, $y_1(x) = e^{r_1 x}$ and $y_2(x) = e^{r_2 x}$ are two linearly independent solutions to (1) and

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

is the general solution to (1).

If $\sqrt{\mathbf{b}^2 - 4\mathbf{ac}} = \mathbf{0}$, then the equation (2) has a repeated root $r \in \mathbf{R}$, $r = -\frac{b}{2a}$. In this case, $y_1(x) = e^{rx}$ and $y_2(x) = xe^{rx}$ are two linearly independent solutions to (1) and

$$y(x) = c_1 e^{rx} + c_2 x e^{rx} = (c_1 + c_2 x) e^{rx}$$

is the general solution to (1).

Example 1. Find a general solution to the given equation (a) y'' - y' - 2y = 0.

SOLUTION The associated auxiliary equation is

$$r^2 - r - 2 = 0,$$

which has two roots

$$r_1 = \frac{1 + \sqrt{1 + 8}}{2} = 2, \quad r_2 = \frac{1 - \sqrt{1 + 8}}{2} = -1.$$

Thus, $\{e^{2x}, e^{-x}\}$ is a fundamental solution set, and a general solution is

$$y(x) = c_1 e^{2x} + c_2 e^{-x}.$$

(b) y'' + 6y' + 9y = 0.

SOLUTION The associated auxiliary equation is

$$r^2 + 6r + 9 = (r+3)^2 = 0,$$

which has one repeated root r = -3.

Thus, $\{e^{-3x}, xe^{-3x}\}$ is a fundamental solution set, and a general solution is

$$y(x) = c_1 e^{-3x} + c_2 x e^{-3x} = (c_1 + c_2 x) e^{-3x}.$$

(c) y'' - 5y' + 6y = 0. SOLUTION The associated auxiliary equation is

$$r^2 - 5r + 6 = 0,$$

which has two roots $r_1 = 2, r_2 = 3$.

Thus, $\{e^{2x}, e^{3x}\}$ is a fundamental solution set, and a general solution is

$$y(x) = c_1 e^{2x} + c_2 e^{3x}.$$

(d) 3y'' + 11y' - 7y = 0. SOLUTION The associated auxiliary equation is

$$3r^2 + 11r - 7 = 0$$

which has two roots

$$r_1 = \frac{-11 + \sqrt{121 + 84}}{6} = \frac{-11 + \sqrt{205}}{6},$$
$$r_1 = \frac{-11 - \sqrt{205}}{6}.$$

Thus, $\left\{e^{\frac{-11+\sqrt{205}}{6}x}, e^{\frac{-11-\sqrt{205}}{6}x}\right\}$ is a fundamental solution set, and a general solution is

$$y(x) = c_1 e^{\frac{-11+\sqrt{205}}{6}x} + c_2 e^{\frac{-11-\sqrt{205}}{6}x}.$$

Example 2. Solve the given initial value problems.

(a) y'' + y' = 0, y(0) = 2, y'(0) = 1. SOLUTION The associated auxiliary equation is

$$r^2 + r = r(r+1) = 0,$$

which has two roots $r_1 = 0$, $r_2 = -1$. Then $\{1, e^{-x}\}$ is a fundamental solution set, and a general solution is

$$y(x) = c_1 + c_2 e^{-x}.$$

To find the specific solution that satisfies the initial conditions, we have to plug x = 0 into y(x) and y'(x).

$$y(0) = c_1 + c_2 = 2,$$

 $y'(x) = -c_2 e^{-x},$
 $y'(0) = -c_2 = 1.$

So, $c_2 = -1$, $c_1 = 2 - c_2 = 2 - (-1) = 3$ and

$$y(x) = 3 - e^{-x}$$

is the solution to the given initial value problem.

(b) y'' - 4y' + 4y = 0, y(1) = 1, y'(1) = 1. SOLUTION The associated auxiliary equation is

$$r^2 - 4r + 4 = (r - 2)^2 = 0$$

which has one repeated root r = 2. Then $\{e^{2x}, xe^{2x}\}$ is a fundamental solution set, and a general solution is

$$y(x) = (c_1 + c_2 x) e^{2x}$$

To find the specific solution that satisfies the initial conditions, we have to plug x = 1 into y(x) and y'(x).

$$y(1) = (c_1 + c_2)e^2 = 1,$$

$$y'(x) = (c_2 + 2c_1 + 2c_2x)e^{2x},$$

$$1) = (c_2 + 2c_1 + 2c_2)e^2 = (2c_1 + 3c_2)e^2 =$$

So, we have system

$$\begin{cases} c_1 + c_2 = e^{-2}, \\ 2c_1 + 3c_2 = e^{-2}. \end{cases}$$

Multiplying the first equation by (-2) and after that adding two equations gives $c_2 = -e^{-2}$. Since $c_1 = e^{-2} - c_2$, $c_1 = e^{-2} + e^{-2} = 2e^{-2}$. Thus

$$y(x) = (2e^{-2} - xe^{-2})e^{2x} = (2 - x)e^{2x-2}$$

is the solution to the given initial value problem.

y'(

Cauchy-Euler Equations

A linear second order differential equation that can be expressed in the form

$$ax^2\frac{d^2y}{dx^2} + bx\frac{dy}{dx} + cy = 0, (3)$$

1.

where a, b, and c are constants is called a **homogeneous Cauchy-Euler equation**.

To solve a homogeneous Cauchy-Euler equation, we make the substitution $x(t) = e^t$. Because $x(t) = e^t$, it follows by the Chain Rule that

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = \frac{dy}{dx}e^t = x\frac{dy}{dx},$$
$$\frac{d^2y}{dt^2} = \frac{d}{dt}\left(\frac{dy}{dt}\right) = \frac{d}{dt}\left(x\frac{dy}{dx}\right) = \frac{dx}{dt}\frac{dy}{dx} + x\frac{d}{dt}\left(\frac{dy}{dx}\right) = e^t\frac{dy}{dx} + x\frac{d^2y}{dx^2}\frac{dx}{dt} = e^t\frac{dy}{dx} + xe^t\frac{d^2y}{dx^2} = x\frac{dy}{dx} + x^2\frac{d^2y}{dx^2} = \frac{dy}{dt} + x^2\frac{d^2y}{dx^2}.$$

Thus,

$$x^2 \frac{d^2 y}{dx^2} = \frac{d^2 y}{dt^2} - \frac{dy}{dt}.$$

Substituting into (3) the expressions for $x \frac{dy}{dx}$ and $x^2 \frac{d^2y}{dx^2}$ gives

$$a\left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right) + b\frac{dy}{dt} + cy = 0,$$
$$a\frac{d^2y}{dt^2} + (b-a)\frac{dy}{dt} + cy = 0,$$

which is linear second order differential equation with constant coefficients.

Example 3. Find the general solution to the equation

$$x^{2}y''(x) + 7xy'(x) - 7y(x) = 0$$

for x > 0.

SOLUTION In this case a = 1, b = 7, c = 7. Substitution $x = e^t$ transforms given equation into an equation

$$\frac{d^2y}{dt^2} + 6\frac{dy}{dt} - 7y = 0.$$

The associated auxiliary equation is

$$r^2 + 6r - 7 = 0,$$

which has two roots $r_1 = 1$, $r_2 = -7$. Then $\{e^x, e^{-7x}\}$ is a fundamental solution set, and a general solution is

$$y(t) = c_1 e^t + c_2 e^{-7t} = c_1 e^t + c_2 (e^t)^{-7}.$$

Expressing y in terms of the original variable x, we find

$$y(x) = c_1 x + c_2 x^{-7}.$$