Chapter 4. Linear Second Order Equations

Section 4.5 Homogeneous Linear Equations with Constant Coefficients

For the equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

where a, b, c are constants, we try to find a solution of the form $y=\mathrm{e}^{r x}$. If we substitute $y=\mathrm{e}^{r x}$ into (1), we obtain

$$
\left(a r^{2}+b r+c\right) \mathrm{e}^{r x}=0
$$

Since $\mathrm{e}^{r x}$ is never zero,

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{2}
\end{equation*}
$$

Consequently, $y=\mathrm{e}^{r x}$ is a solution to (1) if an only if r satisfies (2). Equation (2) is called the auxiliary equation or characteristic equation associated with equation (1).

So, the equation (2) is a quadratic, and its roots are:

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

When $\sqrt{\mathbf{b}^{\mathbf{2}}-\mathbf{4 a c}}>\mathbf{0}$, then $r_{1}, r_{2} \in \mathbf{R}$ and $r_{1} \neq r_{2}$. So, $y_{1}(x)=\mathrm{e}^{r_{1} x}$ and $y_{2}(x)=\mathrm{e}^{r_{2} x}$ are two linearly independent solutions to (1) and

$$
y(x)=c_{1} \mathrm{e}^{r_{1} x}+c_{2} \mathrm{e}^{r_{2} x}
$$

is the general solution to (1).
If $\sqrt{\mathbf{b}^{2}-\mathbf{4 a c}}=\mathbf{0}$, then the equation (2) has a repeated root $r \in \mathbf{R}, r=-\frac{b}{2 a}$. In this case, $y_{1}(x)=\mathrm{e}^{r x}$ and $y_{2}(x)=x \mathrm{e}^{r x}$ are two linearly independent solutions to (1) and

$$
y(x)=c_{1} \mathrm{e}^{r x}+c_{2} x \mathrm{e}^{r x}=\left(c_{1}+c_{2} x\right) \mathrm{e}^{r x}
$$

is the general solution to (1).
Example 1. Find a general solution to the given equation
(a) $y^{\prime \prime}-y^{\prime}-2 y=0$.

SOLUTION The associated auxiliary equation is

$$
r^{2}-r-2=0
$$

which has two roots

$$
r_{1}=\frac{1+\sqrt{1+8}}{2}=2, \quad r_{2}=\frac{1-\sqrt{1+8}}{2}=-1 .
$$

Thus, $\left\{\mathrm{e}^{2 x}, \mathrm{e}^{-x}\right\}$ is a fundamental solution set, and a general solution is

$$
y(x)=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
$$

(b) $y^{\prime \prime}+6 y^{\prime}+9 y=0$.

SOLUTION The associated auxiliary equation is

$$
r^{2}+6 r+9=(r+3)^{2}=0
$$

which has one repeated root $r=-3$.
Thus, $\left\{\mathrm{e}^{-3 x}, x \mathrm{e}^{-3 x}\right\}$ is a fundamental solution set, and a general solution is

$$
y(x)=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}=\left(c_{1}+c_{2} x\right) \mathrm{e}^{-3 x} .
$$

(c) $y^{\prime \prime}-5 y^{\prime}+6 y=0$.

SOLUTION The associated auxiliary equation is

$$
r^{2}-5 r+6=0
$$

which has two roots $r_{1}=2, r_{2}=3$.
Thus, $\left\{\mathrm{e}^{2 x}, \mathrm{e}^{3 x}\right\}$ is a fundamental solution set, and a general solution is

$$
y(x)=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{3 x} .
$$

(d) $3 y^{\prime \prime}+11 y^{\prime}-7 y=0$.

SOLUTION The associated auxiliary equation is

$$
3 r^{2}+11 r-7=0
$$

which has two roots

$$
\begin{gathered}
r_{1}=\frac{-11+\sqrt{121+84}}{6}=\frac{-11+\sqrt{205}}{6}, \\
r_{1}=\frac{-11-\sqrt{205}}{6}
\end{gathered}
$$

Thus, $\left\{\mathrm{e}^{\frac{-11+\sqrt{205}}{6} x}, \mathrm{e}^{\frac{-11-\sqrt{205}}{6} x}\right\}$ is a fundamental solution set, and a general solution is

$$
y(x)=c_{1} \mathrm{e}^{\frac{-11+\sqrt{205}}{6} x}+c_{2} \mathrm{e}^{\frac{-11-\sqrt{205}}{6} x}
$$

Example 2. Solve the given initial value problems.
(a) $y^{\prime \prime}+y^{\prime}=0, y(0)=2, y^{\prime}(0)=1$.

SOLUTION The associated auxiliary equation is

$$
r^{2}+r=r(r+1)=0,
$$

which has two roots $r_{1}=0, r_{2}=-1$. Then $\left\{1, \mathrm{e}^{-x}\right\}$ is a fundamental solution set, and a general solution is

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{-x} .
$$

To find the specific solution that satisfies the initial conditions, we have to plug $x=0$ into $y(x)$ and $y^{\prime}(x)$.

$$
\begin{gathered}
y(0)=c_{1}+c_{2}=2 \\
y^{\prime}(x)=-c_{2} \mathrm{e}^{-x} \\
y^{\prime}(0)=-c_{2}=1
\end{gathered}
$$

So, $c_{2}=-1, c_{1}=2-c_{2}=2-(-1)=3$ and

$$
y(x)=3-\mathrm{e}^{-x}
$$

is the solution to the given initial value problem.
(b) $y^{\prime \prime}-4 y^{\prime}+4 y=0, y(1)=1, y^{\prime}(1)=1$.

SOLUTION The associated auxiliary equation is

$$
r^{2}-4 r+4=(r-2)^{2}=0
$$

which has one repeated root $r=2$. Then $\left\{\mathrm{e}^{2 x}, x \mathrm{e}^{2 x}\right\}$ is a fundamental solution set, and a general solution is

$$
y(x)=\left(c_{1}+c_{2} x\right) \mathrm{e}^{2 x}
$$

To find the specific solution that satisfies the initial conditions, we have to plug $x=1$ into $y(x)$ and $y^{\prime}(x)$.

$$
\begin{gathered}
y(1)=\left(c_{1}+c_{2}\right) \mathrm{e}^{2}=1 \\
y^{\prime}(x)=\left(c_{2}+2 c_{1}+2 c_{2} x\right) \mathrm{e}^{2 x} \\
y^{\prime}(1)=\left(c_{2}+2 c_{1}+2 c_{2}\right) \mathrm{e}^{2}=\left(2 c_{1}+3 c_{2}\right) \mathrm{e}^{2}=1
\end{gathered}
$$

So, we have system

$$
\left\{\begin{array}{c}
c_{1}+c_{2}=\mathrm{e}^{-2} \\
2 c_{1}+3 c_{2}=\mathrm{e}^{-2}
\end{array}\right.
$$

Multiplying the first equation by (-2) and after that adding two equations gives $c_{2}=-\mathrm{e}^{-2}$. Since $c_{1}=\mathrm{e}^{-2}-c_{2}, c_{1}=\mathrm{e}^{-2}+\mathrm{e}^{-2}=2 \mathrm{e}^{-2}$. Thus

$$
y(x)=\left(2 \mathrm{e}^{-2}-x \mathrm{e}^{-2}\right) \mathrm{e}^{2 x}=(2-x) \mathrm{e}^{2 x-2}
$$

is the solution to the given initial value problem.

Cauchy-Euler Equations

A linear second order differential equation that can be expressed in the form

$$
\begin{equation*}
a x^{2} \frac{d^{2} y}{d x^{2}}+b x \frac{d y}{d x}+c y=0 \tag{3}
\end{equation*}
$$

where a, b, and c are constants is called a homogeneous Cauchy-Euler equation.
To solve a homogeneous Cauchy-Euler equation, we make the substitution $x(t)=\mathrm{e}^{t}$. Because $x(t)=\mathrm{e}^{t}$, it follows by the Chain Rule that

$$
\begin{gathered}
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\frac{d y}{d x} \mathrm{e}^{t}=x \frac{d y}{d x} \\
\frac{d^{2} y}{d t^{2}}=\frac{d}{d t}\left(\frac{d y}{d t}\right)=\frac{d}{d t}\left(x \frac{d y}{d x}\right)=\frac{d x}{d t} \frac{d y}{d x}+x \frac{d}{d t}\left(\frac{d y}{d x}\right)=\mathrm{e}^{t} \frac{d y}{d x}+x \frac{d^{2} y}{d x^{2}} \frac{d x}{d t}= \\
\mathrm{e}^{t} \frac{d y}{d x}+x \mathrm{e}^{t} \frac{d^{2} y}{d x^{2}}=x \frac{d y}{d x}+x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d y}{d t}+x^{2} \frac{d^{2} y}{d x^{2}}
\end{gathered}
$$

Thus,

$$
x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t} .
$$

Substituting into (3) the expressions for $x \frac{d y}{d x}$ and $x^{2} \frac{d^{2} y}{d x^{2}}$ gives

$$
\begin{gathered}
a\left(\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}\right)+b \frac{d y}{d t}+c y=0 \\
a \frac{d^{2} y}{d t^{2}}+(b-a) \frac{d y}{d t}+c y=0
\end{gathered}
$$

which is linear second order differential equation with constant coefficients.
Example 3. Find the general solution to the equation

$$
x^{2} y^{\prime \prime}(x)+7 x y^{\prime}(x)-7 y(x)=0
$$

for $x>0$.
SOLUTION In this case $a=1, b=7, c=7$. Substitution $x=\mathrm{e}^{t}$ transforms given equation into an equation

$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}-7 y=0
$$

The associated auxiliary equation is

$$
r^{2}+6 r-7=0
$$

which has two roots $r_{1}=1, r_{2}=-7$. Then $\left\{\mathrm{e}^{x}, \mathrm{e}^{-7 x}\right\}$ is a fundamental solution set, and a general solution is

$$
y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-7 t}=c_{1} \mathrm{e}^{t}+c_{2}\left(\mathrm{e}^{t}\right)^{-7} .
$$

Expressing y in terms of the original variable x, we find

$$
y(x)=c_{1} x+c_{2} x^{-7}
$$

