Chapter 4. Linear Second Order Equations

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

where a, b, c are constants. The associated auxiliary equation is

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{2}
\end{equation*}
$$

Consequently, $y=\mathrm{e}^{r x}$ is a solution to (1) if an only if r satisfies (2).
So, the equation (2) is a quadratic, and its roots are:

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

When $\sqrt{\mathbf{b}^{2}-\mathbf{4 a c}}>\mathbf{0}$, then $r_{1}, r_{2} \in \mathbf{R}$ and $r_{1} \neq r_{2}$. So, $y_{1}(x)=\mathrm{e}^{r_{1} x}$ and $y_{2}(x)=\mathrm{e}^{r_{2} x}$ are two linearly independent solutions to (1) and

$$
y(x)=c_{1} \mathrm{e}^{r_{1} x}+c_{2} \mathrm{e}^{r_{2} x}
$$

is the general solution to (1).
If $\sqrt{\mathbf{b}^{2}-\mathbf{4 a c}}=\mathbf{0}$, then the equation (2) has a repeated root $r \in \mathbf{R}, r=-\frac{b}{2 a}$. In this case, $y_{1}(x)=\mathrm{e}^{r x}$ and $y_{2}(x)=x \mathrm{e}^{r x}$ are two linearly independent solutions to (1) and

$$
y(x)=c_{1} \mathrm{e}^{r x}+c_{2} x \mathrm{e}^{r x}=\left(c_{1}+c_{2} x\right) \mathrm{e}^{r x}
$$

is the general solution to (1).

Example 1.

(a) Find the general solution to the equation

$$
y^{\prime \prime}-2 y^{\prime}-8 y=0 .
$$

SOLUTION The associated auxiliary equation is

$$
r^{2}-2 r-8=0
$$

which roots are $r_{1}=4, r_{2}=-2$, the fundamental solution set is $\left\{\mathrm{e}^{4 x}, \mathrm{e}^{-2 x}\right\}$. Thus, the general solution is

$$
y(x)=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x} .
$$

(b) Solve the given initial value problem $\quad 4 y^{\prime \prime}-12 y^{\prime}+9 y=0, y(0)=1, y^{\prime}(0)=\frac{3}{2}$.

SOLUTION The associated characteristic equation is

$$
4 r^{2}-12 r+9=(2 r-3)^{2}=0
$$

which has one repeated root $r=\frac{3}{2}$. The fundamental solution set is $\left\{\mathrm{e}^{\frac{3}{2} x}, x \mathrm{e}^{\frac{3}{2} x}\right\}$
So, the general solution to the given equation is

$$
y(x)=c_{1} \mathrm{e}^{\frac{3}{2} x}+c_{2} x \mathrm{e}^{\frac{3}{2} x}=\left(c_{1}+c_{2} x\right) \mathrm{e}^{\frac{3}{2} x}
$$

To find the solution to the initial value problem we have to plug $x=0$ into $y(x)$ and $y^{\prime}(x)$.

$$
\begin{gathered}
y^{\prime}(x)=\frac{3}{2}\left(c_{1}+c_{2} x\right) \mathrm{e}^{\frac{3}{2} x}+c_{2} \mathrm{e}^{\frac{3}{2} x}=\left(\frac{3}{2} c_{1}+c_{2}+\frac{3}{2} c_{2} x\right) \mathrm{e}^{\frac{3}{2} x}, \\
y(0)=c_{1}=1, \\
y^{\prime}(0)=\frac{3}{2} c_{1}+c_{2}=\frac{3}{2} .
\end{gathered}
$$

Since $c_{1}=1$ and $c_{2}=\frac{3}{2}-\frac{3}{2} c_{1}=0$, the solution to the initial value problem is

$$
y(x)=\mathrm{e}^{\frac{3}{2} x}
$$

Section 4.6 Auxiliary Equation with Complex Roots

If $\sqrt{\mathbf{b}^{\mathbf{2}}-\mathbf{4 a c}}<\mathbf{0}$, then the equation (2) has two complex conjugate roots

$$
\begin{gathered}
r_{1}=-\frac{b}{2 a}+i \frac{\sqrt{4 a c-b^{2}}}{2 a}=\alpha+i \beta, \\
r_{2}=-\frac{b}{2 a}-i \frac{\sqrt{4 a c-b^{2}}}{2 a}=\alpha-i \beta=\overline{r_{1}},
\end{gathered}
$$

here $i^{2}=-1, \alpha=-\frac{b}{2 a}, \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}, \alpha, \beta \in \mathbf{R}$.
We'd like to assert that the functions $\mathrm{e}^{r_{1} x}$ and $\mathrm{e}^{r_{2} x}$ are solutions to the equation (1). If we assume that the law of exponents applies to complex numbers, then

$$
\begin{gathered}
\mathrm{e}^{(\alpha+i \beta) x}=\mathrm{e}^{\alpha x} \mathrm{e}^{i \beta x} \\
\mathrm{e}^{i \beta x}-?
\end{gathered}
$$

Let's assume that the Maclaurin series for e^{z} is the same for complex numbers z as it is for real numbers.

$$
\mathrm{e}^{i \theta}=\sum_{k=0}^{\infty} \frac{(i \theta)^{k}}{k!}=1+(i \theta)+\frac{(i \theta)^{2}}{2!}+\cdots+\frac{(i \theta)^{k}}{k!}+\cdots
$$

Since $i^{2}=-1$,

$$
\begin{gathered}
\mathrm{e}^{i \theta}=1+(i \theta)-\frac{\theta^{2}}{2!}-\frac{i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{i \theta^{5}}{5!}+\cdots= \\
\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\cdots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\cdots\right)=\cos \theta+i \sin \theta
\end{gathered}
$$

So,

$$
\mathrm{e}^{i \theta}=\cos \theta+i \sin \theta,
$$

then $\mathrm{e}^{i \beta x}=\cos \beta x+i \sin \beta x$ and $\quad \mathrm{e}^{(\alpha+i \beta) x}=\mathrm{e}^{\alpha x} \mathrm{e}^{i \beta x}=\mathrm{e}^{\alpha x}(\cos \beta x+i \sin \beta x)$.

Lemma 1. Let $z(x)=u(x)+i v(x)$ be a complex valued function of the real variable x, here $u(x)$ and $v(x)$ are real valued functions. And let $z(x)$ be a solution to the equation (1). Then, the functions $u(x)$ and $v(x)$ are real-valued solutions to the equation (1).

Proof. By assumption,

$$
\begin{gathered}
a z^{\prime \prime}+b z^{\prime}+c z=a(u+i v)^{\prime \prime}+b(u+i v)^{\prime}+c(u+i v)= \\
a\left(u^{\prime \prime}+i v^{\prime \prime}\right)+b\left(u^{\prime}+i v^{\prime}\right)+c(u+i v)=\left(a u^{\prime \prime}+b u^{\prime}+c u\right)+i\left(a v^{\prime \prime}+b v^{\prime}+c v\right)=0 .
\end{gathered}
$$

But a complex number $a+i b=0$ if and only if $a=0$ and $b=0$. So,

$$
\begin{aligned}
& a u^{\prime \prime}+b u^{\prime}+c u=0, \\
& a v^{\prime \prime}+b v^{\prime}+c v=0,
\end{aligned}
$$

which means that both $u(x)$ and $v(x)$ are real-valued solutions to (1).
When we apply Lemma 1 to the solution

$$
\mathrm{e}^{(\alpha+i \beta) x}=\mathrm{e}^{\alpha x}(\cos \beta x+i \sin \beta x),
$$

we obtain the following.

Complex conjugate roots.

If the auxiliary equation has complex conjugate roots $\alpha \pm i \beta$, then two linearly independent solutions to (1) are $\mathrm{e}^{\alpha x} \cos \beta x$ and $\mathrm{e}^{\alpha x} \sin \beta x$ and a general solution is

$$
y(x)=c_{1} \mathrm{e}^{\alpha x} \cos \beta x+c_{2} \mathrm{e}^{\alpha x} \sin \beta x
$$

where c_{1} and c_{2} are arbitrary constants.

Example 2. Find a general solutions.
(a) $y^{\prime \prime}-10 y^{\prime}+26 y=0$.

SOLUTION The associated auxiliary equation is

$$
r^{2}-10 r+26=0
$$

which roots are $r_{1}=-5+i, r_{2}=-5-i$, the fundamental solution set is $\left\{\mathrm{e}^{-5 x} \cos x, \mathrm{e}^{-5 x} \sin x\right\}$. Thus, the general solution is

$$
y(x)=\mathrm{e}^{-5 x}\left(c_{1} \cos x+c_{2} \sin x\right)
$$

(b) $y^{\prime \prime}+4 y=0$.

SOLUTION The associated auxiliary equation is

$$
r^{2}+4=0
$$

which roots are $r_{1}=2 i, r_{2}=-2 i$, the fundamental solution set is $\{\cos 2 x, \sin 2 x\}$. Thus, the general solution is

$$
y(x)=c_{1} \cos 2 x+c_{2} \sin 2 x
$$

(c) $y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=0$.

SOLUTION The associated auxiliary equation is

$$
r^{3}-r^{2}+4 r-4=r^{2}(r-1)+4(r-1)=\left(r^{2}+4\right)(r-1)=0
$$

which has one real root $r_{1}=1$ and two complex roots $r_{2}=2 i, r_{3}=-2 i$, so the fundamental solution set is $\left\{\mathrm{e}^{x}, \cos 2 x, \sin 2 x\right\}$. Thus, the general solution is

$$
y(x)=c_{1} \mathrm{e}^{x}+c_{2} \cos 2 x+c_{3} \sin 2 x
$$

Example 3. Solve the given initial value problems.
(a) $w^{\prime \prime}-4 w^{\prime}+5 w=0, w(0)=1, w^{\prime}(0)=4$.

SOLUTION The associated characteristic equation is

$$
r^{2}-4 r+5=0
$$

which has two complex roots

$$
r_{1}=2+i, \quad r_{2}=2-i
$$

So, the general solution to the given equation is

$$
w(x)=\mathrm{e}^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)
$$

To find the solution to the initial value problem we have to plug $x=0$ into $w(x)$ and $w^{\prime}(x)$.

$$
\begin{gathered}
w^{\prime}(x)=2 \mathrm{e}^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)+\mathrm{e}^{2 x}\left(-c_{1} \sin x+c_{2} \cos x\right)=\mathrm{e}^{2 x}\left(\left(2 c_{1}+c_{2}\right) \cos x+\left(2 c_{2}-c_{1}\right) \sin x\right) \\
w(0)=c_{1}=1 \\
w^{\prime}(0)=2 c_{1}+c_{2}=4 .
\end{gathered}
$$

Since $c_{1}=1$ and $c_{2}=4-2 c_{1}=2$, the solution to the initial value problem is

$$
w(x)=\mathrm{e}^{2 x}(\cos x+2 \sin x)
$$

(b) $y^{\prime \prime}+9 y=0, y(0)=1, y^{\prime}(0)=1$.

SOLUTION The associated characteristic equation is

$$
r^{2}+9=0
$$

which has two complex roots

$$
r_{1}=3 i, \quad r_{2}=-3 i
$$

So, the general solution to the given equation is

$$
y(x)=c_{1} \cos 3 x+c_{2} \sin 3 x .
$$

To find the solution to the initial value problem we have to plug $x=0$ into $y(x)$ and $y^{\prime}(x)$.

$$
\begin{gathered}
y^{\prime}(x)=-3 c_{1} \sin 3 x+3 c_{2} \cos 3 x \\
y(0)=c_{1}=1 \\
y^{\prime}(0)=3 c_{2}=1
\end{gathered}
$$

Since $c_{1}=1$ and $c_{2}=1 / 3$, the solution to the initial value problem is

$$
y(x)=\cos 3 x+\frac{1}{3} \sin x .
$$

