
Chapter 4. Linear Second Order Equations

ay′′ + by′ + cy = 0, (1)

where a, b, c are constants. The associated auxiliary equation is

ar2 + br + c = 0. (2)

Consequently, y = erx is a solution to (1) if an only if r satisfies (2).
So, the equation (2) is a quadratic, and its roots are:

r1 =
−b +

√
b2 − 4ac

2a
, r2 =

−b −
√

b2 − 4ac

2a

When
√

b2 − 4ac > 0, then r1, r2 ∈ R and r1 6= r2. So, y1(x) = er1x and y2(x) = er2x are
two linearly independent solutions to (1) and

y(x) = c1e
r1x + c2e

r2x

is the general solution to (1).

If
√

b2 − 4ac = 0, then the equation (2) has a repeated root r ∈ R, r = − b
2a

. In this case,
y1(x) = erx and y2(x) = xerx are two linearly independent solutions to (1) and

y(x) = c1e
rx + c2xerx = (c1 + c2x)erx

is the general solution to (1).

Example 1.

(a) Find the general solution to the equation

y′′ − 2y′ − 8y = 0.

SOLUTION The associated auxiliary equation is

r2 − 2r − 8 = 0,

which roots are r1 = 4, r2 = −2, the fundamental solution set is {e4x, e−2x}. Thus, the
general solution is

y(x) = c1e
4x + c2e

−2x.

(b) Solve the given initial value problem 4y′′ − 12y′ + 9y = 0, y(0) = 1, y′(0) = 3
2
.

SOLUTION The associated characteristic equation is

4r2 − 12r + 9 = (2r − 3)2 = 0,

which has one repeated root r = 3
2
. The fundamental solution set is {e 3

2
x, xe

3

2
x}

So, the general solution to the given equation is

y(x) = c1e
3

2
x + c2xe

3

2
x = (c1 + c2x)e

3

2
x.



To find the solution to the initial value problem we have to plug x = 0 into y(x) and y′(x).

y′(x) =
3

2
(c1 + c2x)e

3

2
x + c2e

3

2
x = (

3

2
c1 + c2 +

3

2
c2x)e

3

2
x,

y(0) = c1 = 1,

y′(0) =
3

2
c1 + c2 =

3

2
.

Since c1 = 1 and c2 = 3
2
− 3

2
c1 = 0, the solution to the initial value problem is

y(x) = e
3

2
x.

Section 4.6 Auxiliary Equation with Complex Roots

If
√

b2 − 4ac < 0, then the equation (2) has two complex conjugate roots

r1 = − b

2a
+ i

√
4ac − b2

2a
= α + iβ,

r2 = − b

2a
− i

√
4ac − b2

2a
= α − iβ = r̄1,

here i2 = −1, α = − b
2a

, β =
√

4ac−b2

2a
, α, β ∈ R.

We’d like to assert that the functions er1x and er2x are solutions to the equation (1). If we
assume that the law of exponents applies to complex numbers, then

e(α+iβ)x = eαxeiβx

eiβx−?

Let’s assume that the Maclaurin series for ez is the same for complex numbers z as it is for
real numbers.

eiθ =

∞
∑

k=0

(iθ)k

k!
= 1 + (iθ) +

(iθ)2

2!
+ · · · + (iθ)k

k!
+ · · ·

Since i2 = −1,

eiθ = 1 + (iθ) − θ2

2!
− iθ3

3!
+

θ4

4!
+

iθ5

5!
+ · · · =

(

1 − θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)

+ i

(

θ − θ3

3!
+

θ5

5!
− θ7

7!
+ · · ·

)

= cos θ + i sin θ.

So,

eiθ = cos θ + i sin θ,

then eiβx = cos βx + i sin βx and e(α+iβ)x = eαxeiβx = eαx(cos βx + i sin βx).



Lemma 1. Let z(x) = u(x) + iv(x) be a complex valued function of the real variable x,
here u(x) and v(x) are real valued functions. And let z(x) be a solution to the equation (1).
Then, the functions u(x) and v(x) are real-valued solutions to the equation (1).

Proof. By assumption,

az′′ + bz′ + cz = a(u + iv)′′ + b(u + iv)′ + c(u + iv) =

a(u′′ + iv′′) + b(u′ + iv′) + c(u + iv) = (au′′ + bu′ + cu) + i(av′′ + bv′ + cv) = 0.

But a complex number a + ib = 0 if and only if a = 0 and b = 0. So,

au′′ + bu′ + cu = 0,

av′′ + bv′ + cv = 0,

which means that both u(x) and v(x) are real-valued solutions to (1).

When we apply Lemma 1 to the solution

e(α+iβ)x = eαx(cos βx + i sin βx),

we obtain the following.

Complex conjugate roots.

If the auxiliary equation has complex conjugate roots α± iβ, then two linearly independent
solutions to (1) are eαx cos βx and eαx sin βx and a general solution is

y(x) = c1e
αx cos βx + c2e

αx sin βx,

where c1 and c2 are arbitrary constants.

Example 2. Find a general solutions.

(a) y′′ − 10y′ + 26y = 0.

SOLUTION The associated auxiliary equation is

r2 − 10r + 26 = 0,

which roots are r1 = −5+i, r2 = −5−i, the fundamental solution set is {e−5x cos x, e−5x sin x}.
Thus, the general solution is

y(x) = e−5x(c1 cos x + c2 sin x).

(b) y′′ + 4y = 0.

SOLUTION The associated auxiliary equation is

r2 + 4 = 0,

which roots are r1 = 2i, r2 = −2i, the fundamental solution set is {cos 2x, sin 2x}. Thus,
the general solution is



y(x) = c1 cos 2x + c2 sin 2x.

(c) y′′′ − y′′ + 4y′ − 4y = 0.

SOLUTION The associated auxiliary equation is

r3 − r2 + 4r − 4 = r2(r − 1) + 4(r − 1) = (r2 + 4)(r − 1) = 0,

which has one real root r1 = 1 and two complex roots r2 = 2i, r3 = −2i, so the fundamental
solution set is {ex, cos 2x, sin 2x}. Thus, the general solution is

y(x) = c1e
x + c2 cos 2x + c3 sin 2x.

Example 3. Solve the given initial value problems.

(a) w′′ − 4w′ + 5w = 0, w(0) = 1, w′(0) = 4.

SOLUTION The associated characteristic equation is

r2 − 4r + 5 = 0,

which has two complex roots

r1 = 2 + i, r2 = 2 − i.

So, the general solution to the given equation is

w(x) = e2x(c1 cos x + c2 sin x).

To find the solution to the initial value problem we have to plug x = 0 into w(x) and w′(x).

w′(x) = 2e2x(c1 cos x+c2 sin x)+e2x(−c1 sin x+c2 cos x) = e2x((2c1 +c2) cosx+(2c2−c1) sin x),

w(0) = c1 = 1,

w′(0) = 2c1 + c2 = 4.

Since c1 = 1 and c2 = 4 − 2c1 = 2, the solution to the initial value problem is

w(x) = e2x(cos x + 2 sin x).

(b) y′′ + 9y = 0, y(0) = 1, y′(0) = 1.
SOLUTION The associated characteristic equation is

r2 + 9 = 0,

which has two complex roots

r1 = 3i, r2 = −3i.

So, the general solution to the given equation is



y(x) = c1 cos 3x + c2 sin 3x.

To find the solution to the initial value problem we have to plug x = 0 into y(x) and y′(x).

y′(x) = −3c1 sin 3x + 3c2 cos 3x,

y(0) = c1 = 1,

y′(0) = 3c2 = 1.

Since c1 = 1 and c2 = 1/3, the solution to the initial value problem is

y(x) = cos 3x +
1

3
sin x.


