Chapter 4. Linear Second Order Equations

Example 1. Find the general solution to the equation

$$
y^{\prime \prime \prime}+y^{\prime \prime}+2 y^{\prime}-4 y=0
$$

SOLUTION. The associated auxiliary equation is

$$
r^{3}+r^{2}+2 r-4=0
$$

which roots are $r_{1}=1, r_{2}=-1+i \sqrt{3}, r_{3}=-1-i \sqrt{3}$. So, the fundamental solution set to the equation is $\left\{\mathrm{e}^{x}, \mathrm{e}^{-x} \sin \sqrt{3} x, \mathrm{e}^{-x} \cos \sqrt{3} x\right\}$. Thus, the general solution to the given equation is

$$
y(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x} \sin \sqrt{3} x+c_{3} \mathrm{e}^{-x} \cos \sqrt{3} x
$$

Section 4.7 Superposition and nonhomogeneous equations

Let L be a linear differential operator

$$
L[y](x)=y^{\prime \prime}+p(x) y^{\prime}+q(x) y .
$$

L maps function y into the function $y^{\prime \prime}+p(x) y^{\prime}+q(x) y$.
Suppose that $y_{1}(x)$ an $y_{2}(x)$ are two functions, and

$$
\begin{aligned}
& L\left[y_{1}\right](x)=y_{1}^{\prime \prime}(x)+p(x) y_{1}^{\prime}(x)+q(x) y_{1}(x)=g_{1}(x), \\
& L\left[y_{2}\right](x)=y_{2}^{\prime \prime}(x)+p(x) y_{2}^{\prime}(x)+q(x) y_{2}(x)=g_{2}(x) .
\end{aligned}
$$

Since L is a linear operator,

$$
L\left[c_{1} y_{1}+c_{2} y_{2}\right](x)=c_{1} L\left[y_{1}\right](x)+c_{2} L\left[y_{2}\right](x)=c_{1} g_{1}(x)+c_{2} g_{2}(x) .
$$

Theorem 1 (superposition principle) Let y_{1} be a solution to a differential equation

$$
L\left[y_{1}\right](x)=y_{1}^{\prime \prime}(x)+p(x) y_{1}^{\prime}(x)+q(x) y_{1}(x)=g_{1}(x)
$$

and let y_{2} be a solution to a differential equation

$$
L\left[y_{2}\right](x)=y_{2}^{\prime \prime}(x)+p(x) y_{2}^{\prime}(x)+q(x) y_{2}(x)=g_{2}(x),
$$

where L is a linear differential operator. Then for any constant c_{1} and c_{2}, the function $c_{1} y_{1}+c_{2} y_{2}$ is the solution to the differential equation

$$
L[y](x)=c_{1} g_{1}(x)+c_{2} g_{2}(x) .
$$

Example 2. Given that $y_{1}(x)=\cos x$ is a solution to

$$
y^{\prime \prime}-y^{\prime}+y=\sin x
$$

and $y_{2}(x)=\frac{\mathrm{e}^{2 x}}{3}$ is a solution to

$$
y^{\prime \prime}-y^{\prime}+y=\mathrm{e}^{2 x}
$$

find solutions to the following differential equations:
(a) $y^{\prime \prime}-y^{\prime}+y=5 \sin x$;

SOLUTION. Let $g_{1}(x)=\sin x, g_{2}(x)=\mathrm{e}^{2 x}$. Since $5 \sin x=5 g_{1}(x)$, the solution to the given equation is

$$
y(x)=5 y_{1}(x)=5 \cos x .
$$

(b) $y^{\prime \prime}-y^{\prime}+y=4 \sin x+18 \mathrm{e}^{2 x}$.

SOLUTION. Since $4 \sin x+18 \mathrm{e}^{2 x}=4 g_{1}(x)+18 g_{2}(x)$, the solution to the given equation is

$$
y(x)=4 y_{1}(x)+18 y_{2}(x)=4 \cos x+18 \frac{\mathrm{e}^{2 x}}{3}=4 \cos x+6 \mathrm{e}^{2 x} .
$$

Theorem 2 (representation of solutions for nonhomogeneous equations). Let $y_{p}(x)$ be particular solution to the nonhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x) \tag{1}
\end{equation*}
$$

on the interval (a, b) and let $y_{1}(x)$ and $y_{2}(x)$ be linearly independent solutions on (a, b) of the corresponding homogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

Then a general solution of (1) on the interval (a, b) can be expressed in form

$$
\begin{equation*}
y(x)=y_{p}(x)+c_{1} y_{1}(x)+c_{2} y_{2}(x) . \tag{2}
\end{equation*}
$$

Procedure for solving solving nonhomogeneous equations.
To solve $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)$:
(a) Determine the general solution $c_{1} y_{1}(x)+c_{2} y_{2}(x)$ of the corresponding homogeneous equation.
(b) Find the particular solution $y_{p}(x)$ of the given nonhomogeneous equation.
(c) Form the sum of the particular solution and a general solution to the homogeneous equation

$$
y(x)=y_{p}(x)+c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

to obtain the general solution to the given equation.

Example 3. A nonhomogeneous equation and a particular solution are given. Find a general solution to the equation.
(a) $y^{\prime \prime}-2 y^{\prime}+y=8 \mathrm{e}^{x}, y_{p}(x)=4 x^{2} \mathrm{e}^{x}$.

SOLUTION. The corresponding homogeneous equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0,
$$

has the auxiliary equation

$$
r^{2}-2 r+1=(r-1)^{2}=0
$$

Since the auxiliary equation has one repeated root $r=1$, general solution to homogeneous equation is

$$
y_{h}(x)=\left(c_{1}+c_{2} x\right) \mathrm{e}^{x}
$$

Thus, the general solution to the nonhomogeneous equation is

$$
y(x)=4 x^{2} \mathrm{e}^{x}+\left(c_{1}+c_{2} x\right) \mathrm{e}^{x}
$$

(b) $y^{\prime \prime}+4 y=\sin x-\cos x, y_{p}(x)=\frac{1}{3}(\sin x-\cos x)$.

SOLUTION. The corresponding homogeneous equation

$$
y^{\prime \prime}+4 y=0,
$$

has the auxiliary equation

$$
r^{2}+4=0
$$

Since the auxiliary equation has complex conjugate roots $r_{1}=2 i, r_{2}=-2 i$, general solution to homogeneous equation is

$$
y_{h}(x)=c_{1} \sin 2 x+c_{2} \cos 2 x
$$

Thus, the general solution to the nonhomogeneous equation is

$$
y(x)=\frac{1}{3}(\sin x-\cos x)+c_{1} \sin 2 x+c_{2} \cos 2 x
$$

(c) $y^{\prime \prime}+y^{\prime}-12 y=x^{2}-1, y_{p}(x)=-\frac{x^{2}}{2}-\frac{x}{2}+\frac{5}{4}$.

SOLUTION. The corresponding homogeneous equation

$$
y^{\prime \prime}+y^{\prime}-12 y=0
$$

has the auxiliary equation

$$
r^{2}+r-12=0
$$

Since the auxiliary equation has two real roots $r_{1}=3, r_{2}=-4$, general solution to homogeneous equation is

$$
y_{h}(x)=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-4 x}
$$

Thus, the general solution to the nonhomogeneous equation is

$$
y(x)=-\frac{x^{2}}{2}-\frac{x}{2}+\frac{5}{4}+c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-4 x}
$$

