Chapter 4. Linear Second Order Equations

Section 4.8 Method of Undetermined Coefficients

In this section, we give a simple procedure for finding a particular solution to the equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=g(x) \tag{1}
\end{equation*}
$$

when the nonhomogeneous term $g(x)$ is of a special form

$$
g(x)=\mathrm{e}^{\alpha x}\left(P_{m_{1}}(x) \cos \beta x+Q_{m_{2}}(x) \sin \beta x\right)
$$

where

$$
P_{m_{1}}(x)=p_{0} x^{m_{1}}+p_{1} x^{m_{1}-1}+p_{2} x^{m_{1}-2}+\ldots+p_{m_{1}-1} x+p_{m_{1}}
$$

is a polynomial of degree m_{1} and

$$
Q_{m_{2}}(x)=q_{0} x^{m_{2}}+q_{1} x^{m_{2}-1}+q_{2} x^{m_{2}-2}+\ldots+q_{m_{2}-1} x+q_{m_{2}}
$$

is a polynomial of degree $m_{2}, \alpha, \beta \in \mathbf{R}$.
To apply the method of undetermined coefficients, we first have to solve the auxiliary equation for the corresponding homogeneous equation

$$
a r^{2}+b r+c=0
$$

Let $\alpha=0, \beta \neq 0$, then

$$
\begin{aligned}
& g(x)=\left(p_{0} x^{m_{1}}+p_{1} x^{m_{1}-1}+p_{2} x^{m_{1}-2}+\ldots+p_{m_{1}-1} x+p_{m_{1}}\right) \cos \beta x+ \\
& \quad+\left(q_{0} x^{m_{2}}+q_{1} x^{m_{2}-1}+q_{2} x^{m_{2}-2}+\ldots+q_{m_{2}-1} x+q_{m_{2}}\right) \sin \beta x .
\end{aligned}
$$

We seek a particular solution of the form

$$
\begin{aligned}
& y_{p}(x)=\left(A_{0} x^{m}+A_{1} x^{m-1}+A_{2} x^{m-2}+\ldots+A_{m-1} x+A_{m}\right) \cos \beta x+ \\
& \quad+\left(B_{0} x^{m}+B_{1} x^{m-1}+B_{2} x^{m-2}+\ldots+B_{m-1} x+B_{m}\right) \sin \beta x
\end{aligned}
$$

if $i \beta$ is not a root to the auxiliary equation. Here $m=\max \left\{m_{1}, m_{2}\right\}, A_{0}, \ldots, A_{m}, B_{0}, \ldots, B_{m}$ are unknowns.

If $i \beta$ is one of two roots of the auxiliary equation, then the particular solution is

$$
\begin{aligned}
& y_{p}(x)=x\left(A_{0} x^{m}+A_{1} x^{m-1}+A_{2} x^{m-2}+\ldots+A_{m-1} x+A_{m}\right) \cos \beta x+ \\
& \quad+x\left(B_{0} x^{m}+B_{1} x^{m-1}+B_{2} x^{m-2}+\ldots+B_{m-1} x+B_{m}\right) \sin \beta x= \\
& =\left(A_{0} x^{m+1}+A_{1} x^{m}+A_{2} x^{m-1}+\ldots+A_{m-1} x^{2}+A_{m} x\right) \cos \beta x+ \\
& \quad+\left(B_{0} x^{m+1}+B_{1} x^{m}+B_{2} x^{m-1}+\ldots+B_{m-1} x^{2}+B_{m} x\right) \sin \beta x .
\end{aligned}
$$

To find unknowns $A_{0}, \ldots, A_{m}, B_{0}, \ldots, B_{m}$, we have to substitute $y_{p}(x), y_{p}^{\prime}(x)$, and $y_{p}^{\prime \prime}(x)$ into equation (1). Set the corresponding coefficients from both sides of this equation to each other
to form a system of linear equations with unknowns $A_{0}, \ldots, A_{m}, B_{0}, \ldots, B_{m}$. Solve the system of linear equation for $A_{0}, \ldots, A_{m}, B_{0}, \ldots, B_{m}$.

Example 1. Find the solution to the initial value problem

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4 x \sin x, \quad y(0)=3, \quad y^{\prime}(0)=2
$$

SOLUTION. Let's find the general solution to the corresponding homogeneous equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

The associated auxiliary equation is

$$
r^{2}-3 r+2=0
$$

which has two roots $r_{1}=1$ and $r_{2}=2$. Thus, the general solution to the homogeneous equation is

$$
y_{h}(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x} .
$$

Since $r=i$ is not a root to the auxiliary equation and $m_{1}=1, m_{2}=0, m=1$ we seek a particular solution to the nonhomogeneous equation of the form

$$
y_{p}(x)=(A x+B) \cos x+(C x+D) \sin x
$$

where A, B, C, and D are unknowns.
Now we have to substitute $y_{p}(x), y_{p}^{\prime}(x)$, and $y_{p}^{\prime \prime}(x)$ into equation.

$$
\begin{gathered}
y_{p}^{\prime}(x)=(C x+A+D) \cos x+(C-A x-B) \sin x \\
y_{p}^{\prime \prime}(x)=(2 C-A x-B) \cos x+(-2 A-C x-D) \sin x \\
y_{p}^{\prime \prime}(x)-3 y_{p}^{\prime}(x)+2 y_{p}(x)=(2 C-A x-B) \cos x+(-2 A-C x-D) \sin x- \\
-3((C x+A+D) \cos x+(C-A x-B) \sin x)+2((A x+B) \cos x+(C x+D) \sin x)= \\
=(4 A x-4 C+4 B) \cos x+(4 C x+4 D+4 A) \sin x=4 x \sin x .
\end{gathered}
$$

We set

$$
\begin{aligned}
x \cos x: & 4 A=0 \\
\cos x: & -4 C+4 B=0 \\
x \sin x: & 4 C=4, \\
\sin x: & 4 D+4 A=0 .
\end{aligned}
$$

Solving the system gives $A=0, C=1, B=C=1, D=-A=0$. So,

$$
y_{p}(x)=\cos x+x \sin x
$$

and the general solution to the given nonhomogeneous equation is

$$
y(x)=\cos x+x \sin x+c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x} .
$$

Substituting $y(x)$ into initial conditions gives

$$
\begin{gathered}
y(0)=1+c_{1}+c_{2}=3 \\
y^{\prime}(x)=-\sin x+\sin x-x \cos x+c_{1} \mathrm{e}^{x}+2 c_{2} \mathrm{e}^{2 x}=-x \cos x+c_{1} \mathrm{e}^{x}+2 c_{2} \mathrm{e}^{2 x} \\
y^{\prime}(0)=c_{1}+2 c_{2}=2
\end{gathered}
$$

Solving the system

$$
\left\{\begin{array}{l}
1+c_{1}+c_{2}=3 \\
c_{1}+2 c_{2}=2
\end{array}\right.
$$

gives $c_{1}=2, c_{2}=0$. Thus, the solution to the initial value problem is

$$
y(x)=\cos x+x \sin x+2 \mathrm{e}^{x} .
$$

Let $\alpha \neq 0, \beta \neq 0$, then

$$
\begin{aligned}
g(x) & =\mathrm{e}^{\alpha x}\left[\left(p_{0} x^{m_{1}}+p_{1} x^{m_{1}-1}+p_{2} x^{m_{1}-2}+\ldots+p_{m_{1}-1} x+p_{m_{1}}\right) \cos \beta x+\right. \\
& \left.+\left(q_{0} x^{m_{2}}+q_{1} x^{m_{2}-1}+q_{2} x^{m_{2}-2}+\ldots+q_{m_{2}-1} x+q_{m_{2}}\right) \sin \beta x\right] .
\end{aligned}
$$

We seek a particular solution of the form

$$
\begin{aligned}
y_{p}(x) & =\mathrm{e}^{\alpha x}\left[\left(A_{0} x^{m}+A_{1} x^{m-1}+A_{2} x^{m-2}+\ldots+A_{m-1} x+A_{m}\right) \cos \beta x+\right. \\
& \left.+\left(B_{0} x^{m}+B_{1} x^{m-1}+B_{2} x^{m-2}+\ldots+B_{m-1} x+B_{m}\right) \sin \beta x\right]
\end{aligned}
$$

if $\alpha+i \beta$ is not a root to the auxiliary equation. Here $m=\max \left\{m_{1}, m_{2}\right\}, A_{0}, \ldots, A_{m}, B_{0}, \ldots$, B_{m} are unknowns.

If $\alpha+i \beta$ is one of two roots of the auxiliary equation, then the particular solution is

$$
\begin{aligned}
y_{p}(x) & =\mathrm{e}^{\alpha x} x\left[\left(A_{0} x^{m}+A_{1} x^{m-1}+A_{2} x^{m-2}+\ldots+A_{m-1} x+A_{m}\right) \cos \beta x+\right. \\
& \left.+x\left(B_{0} x^{m}+B_{1} x^{m-1}+B_{2} x^{m-2}+\ldots+B_{m-1} x+B_{m}\right) \sin \beta x\right]= \\
= & \mathrm{e}^{\alpha x}\left[\left(A_{0} x^{m+1}+A_{1} x^{m}+A_{2} x^{m-1}+\ldots+A_{m-1} x^{2}+A_{m} x\right) \cos \beta x+\right. \\
& \left.+\left(B_{0} x^{m+1}+B_{1} x^{m}+B_{2} x^{m-1}+\ldots+B_{m-1} x^{2}+B_{m} x\right) \sin \beta x\right] .
\end{aligned}
$$

To find unknowns $A_{0}, \ldots, A_{m}, B_{0}, \ldots, B_{m}$, we have to substitute $y_{p}(x), y_{p}^{\prime}(x)$, and $y_{p}^{\prime \prime}(x)$ into equation (1). Set the corresponding coefficients from both sides of this equation to each other to form a system of linear equations with unknowns $A_{0}, \ldots, A_{m}, B_{0}, \ldots, B_{m}$. Solve the system of linear equation for $A_{0}, \ldots, A_{m}, B_{0}, \ldots, B_{m}$.

Example 2. Find a general solution to the equation

$$
y^{\prime \prime}-9 y=\mathrm{e}^{3 x} \cos x
$$

SOLUTION. Let's find the general solution to the corresponding homogeneous equation

$$
y^{\prime \prime}-9 y=0 .
$$

The associated auxiliary equation is

$$
r^{2}-9=0
$$

which has two roots $r_{1}=3$ and $r_{2}=-3$. Thus, the general solution to the homogeneous equation is

$$
y_{h}(x)=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x} .
$$

Since $r=3+i$ is not a root to the auxiliary equation and $m_{1}=m_{2}=0$, we seek a particular solution to the nonhomogeneous equation of the form

$$
y_{p}(x)=\mathrm{e}^{3 x}(A \cos x+B \sin x),
$$

where A and B are unknowns.
Now we have to substitute $y_{p}(x)$ and $y_{p}^{\prime \prime}(x)$ into equation.

$$
\begin{gathered}
y_{p}^{\prime}(x)=\mathrm{e}^{3 x}[(3 A+B) \cos x+(3 B-A) \sin x], \\
y_{p}^{\prime \prime}(x)=\mathrm{e}^{3 x}[(8 A+6 B) \cos x+(8 B-6 A) \sin x], \\
y_{p}^{\prime \prime}(x)-9 y_{p}(x)=\mathrm{e}^{3 x}[(8 A+6 B) \cos x+(8 B-6 A) \sin x]-9 \mathrm{e}^{3 x}(A \cos x+B \sin x)= \\
\mathrm{e}^{3 x}[(6 B-A) \cos x+(-6 A-B) \sin x]=\mathrm{e}^{3 x} \cos x .
\end{gathered}
$$

We set

$$
\begin{array}{ll}
\mathrm{e}^{3 x} \cos x: & 6 B-A=1, \\
\mathrm{e}^{3 x} \sin x: & -6 A-B=0 .
\end{array}
$$

Solving the system gives $A=-1 / 37, B=-6 A=6 / 37$. So,

$$
y_{p}(x)=\mathrm{e}^{3 x}\left(-\frac{1}{37} \cos x+\frac{6}{37} \sin x\right),
$$

and the general solution to the given nonhomogeneous equation is

$$
y(x)=\mathrm{e}^{3 x}\left(-\frac{1}{37} \cos x+\frac{6}{37} \sin x\right)+c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x} .
$$

Particular solutions to $a y^{\prime \prime}+b y^{\prime}+c y=g(x)$

Type	$g(x)$	$y_{p}(x)$
(I)	$p_{0} x^{m_{1}}+p_{1} x^{m_{1}-1}+\ldots+p_{m_{1}}$	$x^{s}\left(A x^{m_{1}}+B x^{m_{1}-1}+\ldots+D x+F\right)$
(II)	$d \mathrm{e}^{\alpha x}$	$x^{s} A \mathrm{e}^{\alpha x}$
(III)	$\mathrm{e}^{\alpha x}\left(p_{0} x^{m_{1}}+p_{1} x^{m_{1}-1}+\ldots+p_{m_{1}}\right)$	$x^{s} \mathrm{e}^{\alpha x}\left(A x^{m_{1}}+B x^{m_{1}-1}+\ldots+D x+F\right)$
(IV)	$d \cos \beta x+f \sin \beta x$	$x^{s}(A \cos \beta x+B \sin \beta x)$
(V)	$\left(p_{0} x^{m_{1}}+p_{1} x^{m_{1}-1}+\ldots+p_{m_{1}}\right) \cos \beta x+$	$x^{s}\left\{\left(A_{0} x^{m}+A_{1} x^{m-1}+\ldots+A_{m}\right) \cos \beta x+\right.$
	$+\left(q_{0} x^{m_{2}}+q_{1} x^{m_{2}-1}+\ldots+q_{m_{2}}\right) \sin \beta x$	$\left.+\left(B_{0} x^{m}+B_{1} x^{m-1}+\ldots+B_{m}\right) \sin \beta x\right\}$
(VI)	$\mathrm{e}^{\alpha x}(d \cos \beta x+f \sin \beta x)$	$x^{s} \mathrm{e}^{\alpha x}(A \cos \beta x+B \sin \beta x)$
(VII)	$\mathrm{e}^{\alpha x}\left[\left(p_{0} x^{m_{1}}+p_{1} x^{m_{1}-1}+\ldots+p_{m_{1}}\right) \cos \beta x+\right.$	$x^{s} \mathrm{e}^{\alpha x}\left[\left(A_{0} x^{m}+A_{1} x^{m-1}+\ldots+A_{m}\right) \cos \beta x+\right.$
	$\left.+\left(q_{0} x^{m_{2}}+q_{1} x^{m_{2}-1}+\ldots+q_{m_{2}}\right) \sin \beta x\right]$	$\left.+\left(B_{0} x^{m}+B_{1} x^{m-1}+\ldots+B_{m}\right) \sin \beta x\right]$

In this table $s=0$, when $\alpha+i \beta$ is not a root to the auxiliary equation, $s=1$, when $\alpha+i \beta$ is one of two roots to the auxiliary equation, and $s=0$, when $\beta=0$ and α is a repeated root to the auxiliary equation; $m=\max \left\{m_{1}, m_{2}\right\}$.

Example 3. Using Table, find the form for a particular solution $y_{p}(x)$ to

$$
y^{\prime \prime}+y^{\prime}-2 y=g(x)
$$

where $g(x)$ equals
(a) $g(x)=\left(2 x^{2}+3\right) \mathrm{e}^{-2 x}$,
(b) $g(x)=x \sin 2 x$,
(c) $g(x)=\mathrm{e}^{x}+\cos 3 x$.

SOLUTION. The auxiliary equation to the corresponding homogeneous equation is

$$
r^{2}+r-2=0
$$

which has two roots $r_{1}=-2, r_{2}=1$.
(a) From the table, function $g(x)=\left(2 x^{2}+3\right) \mathrm{e}^{-2 x}$ has type (III) with $\alpha=-2$ (one of two roots to the auxiliary equation), $m_{1}=2$. Hence y_{p} has the form

$$
y_{p}(x)=x\left(A x^{2}+B x+C\right) \mathrm{e}^{-2 x}=\left(A x^{3}+B x^{2}+C x\right) \mathrm{e}^{-2 x} .
$$

(b) From the table, function $g(x)=x \sin 2 x$ has type (V) with $\beta=2, m_{1}=0, m_{2}=1$. Hence y_{p} has the form

$$
y_{p}(x)=(A x+B) \cos 2 x+(B x+C) \sin 2 x .
$$

(c) In this case $y_{p}(x)=y_{1 p}(x)+y_{2 p}(x)$, where $y_{1 p}$ is a particular solution to the equation

$$
y^{\prime \prime}+y^{\prime}-2 y=\mathrm{e}^{x}
$$

and $y_{2 p}$ is a solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=\cos 3 x
$$

Function $g_{1}(x)=\mathrm{e}^{x}$ has type (II) with $d=1, \alpha=1$ (one of two roots to the auxiliary equation), thus

$$
y_{1 p}(x)=A x \mathrm{e}^{x} .
$$

Function $g_{2}(x)=\cos 3 x$ has type (IV) with $d=1, f=0, \beta=3$, so

$$
y_{2 p}(x)=B \cos 3 x+C \sin 3 x .
$$

The particular solution y_{p} has the form

$$
y_{p}(x)=A x \mathrm{e}^{x}+B \cos 3 x+C \sin 3 x .
$$

Section 4.9 Variation of Parameters

Consider the nonhomogeneous linear second order differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x) . \tag{2}
\end{equation*}
$$

Let $\left\{y_{1}(x), y_{2}(x)\right\}$ be a fundamental solution set to the corresponding homogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

The general solution to this homogeneous equation is $y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$, where c_{1} and c_{2} are constants. To find a particular solution to (2) we assume that $c_{1}=c_{1}(x)$ and $c_{2}=c_{2}(x)$ are functions of x and we seek a particular solution $y_{p}(x)$ in form

$$
y_{p}(x)=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x) .
$$

Let's substitute $y_{p}(x), y_{p}^{\prime}(x)$, and $y_{p}^{\prime \prime}(x)$ into (2).

$$
y_{p}^{\prime}(x)=c_{1}^{\prime}(x) y_{1}(x)+c_{2}^{\prime}(x) y_{2}(x)+c_{1}(x) y_{1}^{\prime}(x)+c_{2}(x) y_{2}^{\prime}(x) .
$$

We simplify the computation assuming that

$$
c_{1}^{\prime}(x) y_{1}(x)+c_{2}^{\prime}(x) y_{2}(x)=0 .
$$

So,

$$
\begin{gathered}
y_{p}^{\prime}(x)=c_{1}(x) y_{1}^{\prime}(x)+c_{2}(x) y_{2}^{\prime}(x) . \\
y_{p}^{\prime \prime}(x)=c_{1}^{\prime}(x) y_{1}^{\prime}(x)+c_{2}^{\prime}(x) y_{2}^{\prime}(x)+c_{1}(x) y_{1}^{\prime \prime}(x)+c_{2}(x) y_{2}^{\prime \prime}(x) . \\
y_{p}^{\prime \prime}+p(x) y_{p}^{\prime}+q(x) y_{p}=c_{1}^{\prime}(x) y_{1}^{\prime}(x)+c_{2}^{\prime}(x) y_{2}^{\prime}(x)+c_{1}(x) y_{1}^{\prime \prime}(x)+c_{2}(x) y_{2}^{\prime \prime}(x)+ \\
+p(x)\left(c_{1}(x) y_{1}^{\prime}(x)+c_{2}(x) y_{2}^{\prime}(x)\right)+q(x)\left(c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x)\right)= \\
=c_{1}^{\prime}(x) y_{1}^{\prime}(x)+c_{2}^{\prime}(x) y_{2}^{\prime}(x)+c_{1}(x)\left(y_{1}^{\prime \prime}(x)+p(x) y_{1}^{\prime}(x)+q(x) y_{1}(x)\right)+ \\
+c_{2}(x)\left(y_{2}^{\prime \prime}(x)+p(x) y_{2}^{\prime}(x)+q(x) y_{2}(x)\right)= \\
c_{1}^{\prime}(x) y_{1}^{\prime}(x)+c_{2}^{\prime}(x) y_{2}^{\prime}(x)=g(x) .
\end{gathered}
$$

To summarize, we can find $c_{1}(x)$ and $c_{2}(x)$ solving the system

$$
\left\{\begin{array}{l}
c_{1}^{\prime}(x) y_{1}(x)+c_{2}^{\prime}(x) y_{2}(x)=0 \\
c_{1}^{\prime}(x) y_{1}^{\prime}(x)+c_{2}^{\prime}(x) y_{2}^{\prime}(x)=g(x)
\end{array}\right.
$$

for $c_{1}^{\prime}(x)$ and $c_{2}^{\prime}(x)$. Cramer's rule gives

$$
c_{1}^{\prime}(x)=\frac{-g(x) y_{2}(x)}{W\left[y_{1}, y_{2}\right](x)}, \quad c_{2}^{\prime}(x)=\frac{g(x) y_{1}(x)}{W\left[y_{1}, y_{2}\right](x)} .
$$

Then

$$
c_{1}(x)=\int \frac{-g(x) y_{2}(x)}{W\left[y_{1}, y_{2}\right](x)} d x, \quad c_{2}(x)=\int \frac{g(x) y_{1}(x)}{W\left[y_{1}, y_{2}\right](x)} d x .
$$

Example 4. Find the general solution to the equation

$$
y^{\prime \prime}+y=\frac{1}{\sin x} .
$$

SOLUTION. The corresponding homogeneous equation is

$$
y^{\prime \prime}+y=0
$$

The fundamental solution set to this homogeneous equation is $\{\cos x, \sin x\}$,

$$
\begin{gathered}
y_{1}(x)=\cos x, \quad y_{2}(x)=\sin x \\
y_{1}^{\prime}(x)=-\sin x, \\
y_{2}^{\prime}(x)=\cos x
\end{gathered}
$$

The general solution to the homogeneous equation is

$$
y_{h}(x)=c_{1} \cos x+c_{2} \sin x .
$$

Then the particular solution to the nonhomogeheous equation is

$$
y_{p}(x)=c_{1}(x) \cos x+c_{2}(x) \sin x .
$$

To find $c_{1}(x)$ and $c_{2}(x)$ we have to solve the system

$$
\left\{\begin{array}{l}
c_{1}^{\prime}(x) \cos x+c_{2}^{\prime}(x) \sin x=0 \\
c_{1}^{\prime}(x)(-\sin x)+c_{2}^{\prime}(x) \cos x=\frac{1}{\sin x} .
\end{array}\right.
$$

First equation gives $c_{2}^{\prime}=-c_{1}^{\prime} \frac{\cos x}{\sin x}$, so

$$
\begin{gathered}
c_{1}^{\prime}(x)(-\sin x)+c_{2}^{\prime}(x) \cos x=c_{1}^{\prime}(x)(-\sin x)-c_{1}^{\prime} \frac{\cos x}{\sin x} \cos x=-\frac{c_{1}^{\prime}\left(\cos ^{2} x+\sin ^{2} x\right)}{\sin x}=-\frac{c_{1}^{\prime}}{\sin x}=\frac{1}{\sin x}, \\
c_{1}^{\prime}(x)=-1, \\
c_{1}(x)=-x+c_{3}, \\
c_{2}^{\prime}=-c_{1}^{\prime} \frac{\cos x}{\sin x}=\frac{\cos x}{\sin x}, \\
c_{2}(x)=\int \frac{\cos x}{\sin x} d x=\ln |\sin x|+c_{4}
\end{gathered}
$$

Thus, the general solution to the given nonhomogneous equation is

$$
y(x)=\left(-x+c_{3}\right) \cos x+\left(\ln |\sin x|+c_{4}\right) \sin x
$$

