Chapter 3. Mathematical methods and numerical methods involving first order
equations.

Section 3.1 Mathematical modeling.

Formulate the problem

Here you must pose the problem in such a way that it can be ”answered” mathematically.

Develop the model

There are two things to be one here. First, you must decide which variables are important
and which are not. The former are then classified as independent variables or dependent
variables. The unimportant variables are those that have very little or no effect on the process.
The independent variables are those whose effect is significant. The dependent variables are
those that are affected by the independent variables and that are important to solving the
problem.

Second, you must determine or specify the relationships that exist among the relevant
variables.

Test the model

The following questions should be answered:
Are the assumptions reasonable?

Are the equations dimensionally consistent?

Is the model internally consistent in the sense that equations do not contradict one
another?

Do the relevant equation have solutions?

Are the solutions unique?

How difficult is to obtain the solutions?

Do the solutions provide an answer for the problem being studied?

You should always keep in mind that a model is not a reality but only representation of
reality.

Section 3.2 Compartmental analysis

Many complicated processes can be broken down into distinct stages and the entire system
modeled by describing the interactions between the various stages. Such systems are called
compartmental.

The basic one-compartment system consists of a function z(¢) that represents the amount
of a substance in the compartment at time ¢, an input rate at which the substance enters the
compartment, and an output rate at which the substance leaves the compartment

INPUT RATE — z(t) — OUTPUT RATE



Because the derivative of & with respect to t can be interpreted as the rate of change in
the amount of the substance in the compartment with respect to time, the one-compartment
system suggests

x
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as a mathematical model for the process.

Mixing problem.

Example 1. A brine solution of salt flows at a constant rate of 8L /min into a large tank
tat initially held 100L of brine solution in which was dissolved 0.5kg of salt. The solution inside
the tank is kept well stirred and flows out of the tank in the same rate. If the concentration
of salt in the brine entering the tank is 0.05kg/L, determine the mass of salt in the salt after ¢
min. When will the concentration of salt in the tank reach 0.02kg/L?

SOLUTION. Let (t) denote the mass of salt in the tank at time ¢, we can determine the
concentration of salt in the tank by dividing x(¢) by the volume of fluid in the tank at time t.

First, we must determine the rate at which salt enters the tank. We are given that brine
flows into the tank at a rate of 8L/min. Since the concentration is 0.05kg/L, we conclude that
the input rate of salt into the tank is

(8L/min)(0.05kg/L) = 0.4kg/min.

We must now determine the output rate of salt from the tank. The brine solution in the
tank is well stirred, so let’s assume that the concentration of salt in the tank is uniform. So,
the concentration of salt in any part of the tank at time ¢ is just x(t) divided by the volume of
fluid in the tank. Because the tank initially contains 100L and the rate of flow into the tank is
the same as the rate of flow out, the volume is a constant 100L, Hence, the output rate is
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The tank initially contains 0.5kg of salt, so we set x(0) = 0.5. The initial value problem
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is a mathematical model for the mixing problem.
Separating the variables and integrating gives
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x(t)=5— cre 5.

Substituting into initial conditions gives
z(0) =5 —c; = 0.5,

1 = 4.5

and the solution to the given initial problem is

x(t) =5 — 4567
To determine when the concentration of salt is 0.02kg/L, we have to solve for ¢ an equation

5— 456" = (.02,
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Population models

Let p(t) be the population of bacteria at time ¢. In our model we assume that the growth
rate is proportional to the population present. We also assume that the death rate is zero. The
mathematical model for population of bacteria is

dp
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where k; > 0 is the proportionality constant for the growth rate and pg is the population
at time t = 0.

For human population the assumption that the death rate is zero is wrong! If we assume that
the people die only of natural causes, we might expect the death rate also to be proportional
to the size of the population. So, we can rewrite formula

dp
— = kip — kop = (k1 — ko)p = kp,
dt

where k = k; — ko and k5 is the proportionality constant for the death rate. Let’s assume
that k; > ko so that k£ > 0. This gives the mathematical model
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which is called the Malthusian or exponential, law of population growth.
The solution to this initial value problem is

p(t) = poe™.

Example 2. In 1980 the Department of Natural Resources released 1000 splake (a
crossbreed of fish) into a lake. In 1987 the population of splake in the lake was estimated to be
3000. Using the Malthusian law, estimate the population of splake in the lake in the year 2010.



SOLUTION. In this case,
po = 1000.

Then in 1987 the population of splake is
p(1987 — 1980) = 1000e™ = 3000.

Solving this equation for k gives

tln3

so p(t) = 1000e 7 = 1000 - 37.

In 2010 the population of splake will be
4

p(2010 — 1980) = p(40) = 1000 - 37.

What about premature death? We might assume that another component of the death
is proportional to the number of two-party interactions. There are p(p — 1)/2 such possible
interactions for a population of size p. Thus, if we combine the birth rate with the death rate
and rearrange constants, we get the logistic model

dp
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where A = k3/2 and p; = (2k1/ks) + 1.
This equation has two constant (equilibrium) solutions p(t) = p; and p(¢) = 0. The nonequi-
librium solutions can be found by separating variables
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If p(0) = po, and c3 = 1 — p1/po, then solving for p(t), we find
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The function p(t) is called the logistic function.



