Chapter I Introduction

Section 1.2 Solutions and Initial Value Problems

A general form for an n th-order equation with variable x and unknown function $y=y(x)$ can be expressed as

$$
\begin{equation*}
F\left(x, y, \frac{d y}{d x}, \cdots, \frac{d^{n} y}{d x^{n}}\right)=0 \tag{1}
\end{equation*}
$$

where F is a function that depends on x, y, and the derivatives of y up to the order n. We assume that the equation holds for all x in an open interval $I(a<x<b$, where a or b could be infinite). In many cases we can isolate the highest-order term $d^{n} y / d x^{n}$ and write equation (1) as

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, \frac{d y}{d x}, \cdots, \frac{d^{n-1} y}{d x^{n-1}}\right)=0 . \tag{2}
\end{equation*}
$$

Definition 1. A function $\varphi(x)$ that when substituted by y in equation (1) or (2) satisfies the equation for all x in the interval I is called an explicit solution to the equation on I.

Examples Determine whether the function is an explicit solution to the given differential equation.
(a) $\varphi(x)=5 x^{2}, x y^{\prime}=2 y$;

SOLUTION Since $\varphi(x)=5 x^{2}$, then $\varphi^{\prime}(x)=10 x$. Substitution of $\varphi(x)$ for y in equation gives

$$
\begin{gathered}
x \cdot 10 x=2 \cdot 5 x^{2}, \quad \text { or } \\
10 x^{2}=10 x^{2} .
\end{gathered}
$$

Since this is valid for any real x, the function $\varphi(x)=5 x^{2}$ is an explicit solution to equation on $(-\infty,+\infty)$.
(b) $\varphi(x)=C_{1} \cos 5 x+C_{2} \sin 5 x, y^{\prime \prime}+25 y=0$.

SOLUTION Lets compute

$$
\varphi^{\prime}(x)=\frac{d}{d x}\left(C_{1} \cos 5 x+C_{2} \sin 5 x\right)=-5 C_{1} \sin 5 x+5 C_{2} \cos 5 x
$$

and

$$
\varphi^{\prime \prime}(x)=\frac{d}{d x}\left(-5 C_{1} \sin 5 x+5 C_{2} \cos 5 x\right)=-25 C_{1} \cos 5 x-25 C_{2} \sin 5 x
$$

Substitution of φ and $\varphi^{\prime \prime}$ for y and $y^{\prime \prime}$ in given equation yields

$$
-25 C_{1} \cos 5 x-25 C_{2} \sin 5 x+25\left(C_{1} \cos 5 x+C_{2} \sin 5 x\right)=0
$$

for any C_{1} and C_{2}.
(c) $\varphi(x)=\sqrt{2 x-x^{2}}, y^{3} y^{\prime \prime}+1=0$.

SOLUTION

$$
\begin{aligned}
\varphi^{\prime}(x)= & \frac{d}{d x}\left(\sqrt{2 x-x^{2}}\right)=\frac{1}{2 \sqrt{2 x-x^{2}}}(2-2 x)=\frac{1-x}{\sqrt{2 x-x^{2}}} \\
\varphi^{\prime \prime}(x)= & \frac{d}{d x}\left(\frac{1-x}{\sqrt{2 x-x^{2}}}\right)=\frac{-\sqrt{2 x-x^{2}}-(1-x) \frac{1-x}{\sqrt{2 x-x^{2}}}}{2 x-x^{2}}= \\
& \frac{-\left(2 x-x^{2}\right)-(1-x)^{2}}{\left(2 x-x^{2}\right)^{3 / 2}}=-\frac{1}{\left(2 x-x^{2}\right)^{3 / 2}} .
\end{aligned}
$$

Then

$$
\varphi^{3}(x) \varphi^{\prime \prime}(x)+1=\left(\sqrt{2 x-x^{2}}\right)^{3} \cdot\left(-\frac{1}{\left(2 x-x^{2}\right)^{3 / 2}}\right)+1=-1+1=0
$$

Thus, $\varphi(x)=\sqrt{2 x-x^{2}}$ is an explicit solution for the given equation for all $0<x<2$.
Sometimes the solution to the equation is defined implicitly.
Example Show that the relation $x^{2}-x y+y^{2}=1$ implicitly defines the solution to the equation $(x-2 y) y^{\prime}=2 x-y$.

Lets find $y^{\prime}=\frac{d y}{d x}$:

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}-x y+y^{2}\right)=\frac{d}{d x}(1), \\
2 x-y-x \frac{d y}{d x}+2 y \frac{d y}{d x}=0 \\
2 x-y-(x-2 y) \frac{d y}{d x}=0 \\
\frac{d y}{d x}=\frac{2 x-y}{x-2 y} .
\end{gathered}
$$

And now lets substitute the expression for y^{\prime} into equation:

$$
\begin{gathered}
(x-2 y) \frac{2 x-y}{x-2 y}=2 x-y \\
2 x-y=2 x-y
\end{gathered}
$$

which is indeed valid for all $-\frac{2}{\sqrt{3}}<x<\frac{2}{\sqrt{3}}$.
Definition 2. A relation $G(x, y)=0$ is said to be an implicit solution to equation (1) on the interval I if it defines one or more explicit solutions on I.

Example

Show that $y-\ln y=x^{2}+1$ is an implicit solution to the equation $\frac{d y}{d x}=\frac{2 x y}{y-1}$.
SOLUTION Find y^{\prime} :

$$
\begin{gathered}
\frac{d}{d x}(y-\ln y)=\frac{d}{d x}\left(x^{2}+1\right), \\
y^{\prime}-\frac{y^{\prime}}{y}=2 x, \quad y^{\prime}=\frac{2 x y}{y-1},
\end{gathered}
$$

which is identical to the given equation.

Example

Verify that $x^{2}+C y^{2}=1$, where C is an arbitrary constant, is a one-parameter family of implicit solution to

$$
\frac{d y}{d x}=\frac{x y}{x^{2}-1}
$$

and graph several of the solution curves using the same coordinate axes.
SOLUTION When we implicitly differentiate the equation $x^{2}+C y^{2}=1$ with respect to x, we find

$$
\begin{align*}
2 x+2 C y \frac{d y}{d x} & =1, \quad \text { or } \\
\frac{d y}{d x} & =-\frac{x}{C y} . \tag{3}
\end{align*}
$$

Since $x^{2}-1=-C y^{2}$, we can rewrite the given equation as follows:

$$
\frac{d y}{d x}=\frac{x y}{x^{2}-1}=-\frac{x y}{C y^{2}}=-\frac{x}{C y},
$$

which is identical to (3). In Figure 1 we have sketched the implicit solutions for $C=$ $0, \pm 1, \pm 2$. For $C=0$, the implicit solution gives rise to two implicit solutions $x=1$ and $x=-1$, for $C>0$ the implicit solutions are ellipses with the center in $(0,0)$, for $C<0$, the curves are hyperbolas. Notice that the implicit solution curves fill the entire plane.

Figure 1 Implicit solutions $x^{2}+C y^{2}=1$

