Chapter 7. Laplace Transforms.

Section 7.2 Definition of the Laplace Transform.

Definition 1. Let $f(x)$ be a function on $[0, \infty)$. The Laplace transform of f is the function F defined by the integral

$$
F(s)=\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t
$$

The domain of $F(s)$ is all the values of s for which integral exists. The Laplace transform of f is denoted by both F and $\mathcal{L}\{f\}$.

Notice, that integral in definition is improper integral.

$$
\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t=\lim _{N \rightarrow \infty} \int_{0}^{N} f(t) \mathrm{e}^{-s t} d t
$$

whenever the limit exists.
Example 1. Determine the Laplace transform of the given function.
(a) $f(t)=1, t \geq 0$.

SOLUTION. Using the definition of Laplace transform, we compute

$$
\mathcal{L}\{1\}(s)=\int_{0}^{\infty} 1 \cdot \mathrm{e}^{-s t} d t=\lim _{N \rightarrow \infty} \int_{0}^{N} \mathrm{e}^{-s t} d t=-\left.\frac{1}{s} \lim _{N \rightarrow \infty} \mathrm{e}^{-s t}\right|_{0} ^{N}=\frac{1}{s} .
$$

So,

$$
\mathcal{L}\{1\}(s)=\frac{1}{s}, \quad s>0
$$

(b) $f(t)=t^{2}, t \geq 0$.

SOLUTION. Using the definition of Laplace transform, we compute

$$
\begin{gathered}
\mathcal{L}\left\{t^{2}\right\}(s)=\int_{0}^{\infty} t^{2} \mathrm{e}^{-s t} d t=\lim _{N \rightarrow \infty} \int_{0}^{N} t^{2} \mathrm{e}^{-s t} d t=\left|\begin{array}{ll}
u=t^{2} & u^{\prime}=2 t \\
v^{\prime}=\mathrm{e}^{-s t} & v=-\frac{1}{s} \mathrm{e}^{-s t}
\end{array}\right|= \\
=\lim _{N \rightarrow \infty}\left[-\left.\frac{t^{2}}{s} \mathrm{e}^{-s t}\right|_{0} ^{N}+\frac{2}{s} \int_{0}^{N} t \mathrm{e}^{-s t} d t\right]=\lim _{N \rightarrow \infty}\left[\begin{array}{ll}
\left.-\frac{N^{2}}{s} \mathrm{e}^{-s N}+\frac{2}{s} \int_{0}^{N} t \mathrm{e}^{-s t} d t\right]= \\
=-\lim _{N \rightarrow \infty} \frac{N^{2}}{s} \mathrm{e}^{-s N}+\lim _{N \rightarrow \infty} \frac{2}{s} \int_{0}^{N} t \mathrm{e}^{-s t} d t=\frac{2}{s} \lim _{N \rightarrow \infty} \int_{0}^{N} t \mathrm{e}^{-s t} d t=\left|\begin{array}{ll}
u=t & u^{\prime}=1 \\
v^{\prime}=\mathrm{e}^{-s t} & v=-\frac{1}{s} \mathrm{e}^{-s t}
\end{array}\right|=
\end{array} .=\right.
\end{gathered}
$$

$$
\begin{gathered}
=\frac{2}{s} \lim _{N \rightarrow \infty}\left[-\left.\frac{t}{s} \mathrm{e}^{-s t}\right|_{0} ^{N}+\frac{1}{s} \int_{0}^{N} \mathrm{e}^{-s t} d t\right]=\frac{2}{s} \lim _{N \rightarrow \infty}\left[-\frac{N}{s} \mathrm{e}^{-s N}+\frac{1}{s} \int_{0}^{N} \mathrm{e}^{-s t} d t\right]= \\
=-\frac{2}{s^{2}} \lim _{N \rightarrow \infty} N \mathrm{e}^{-s N}+\frac{2}{s^{2}} \lim _{N \rightarrow \infty} \int_{0}^{N} \mathrm{e}^{-s t} d t=\frac{2}{s^{2}} \lim _{N \rightarrow \infty} \int_{0}^{N} \mathrm{e}^{-s t} d t= \\
=-\left.\frac{2}{s^{3}} \lim _{N \rightarrow \infty} \mathrm{e}^{-s t}\right|_{0} ^{N}=\frac{2}{s^{3}}
\end{gathered}
$$

So,

$$
\mathcal{L}\left\{t^{2}\right\}(s)=\frac{2}{s^{3}}, \quad s>0
$$

(c) $f(t)=\mathrm{e}^{a t}$, where a is a constant.

SOLUTION. Using the definition of Laplace transform, we compute

$$
\mathcal{L}\left\{\mathrm{e}^{a t}\right\}(s)=\int_{0}^{\infty} \mathrm{e}^{a t} \mathrm{e}^{-s t} d t=\lim _{N \rightarrow \infty} \int_{0}^{N} \mathrm{e}^{-(s-a) t} d t=-\left.\frac{1}{s-a} \lim _{N \rightarrow \infty} \mathrm{e}^{-(s-a) t}\right|_{0} ^{N}=\frac{1}{s-a} .
$$

So,

$$
\mathcal{L}\left\{\mathrm{e}^{a t}\right\}(s)=\frac{1}{s-a}, \quad s>a
$$

(d) $f(t)= \begin{cases}t^{2}, & 0<t<1, \\ 1, & 1 \leq t \leq 2, \\ 1-t, & 2<t .\end{cases}$

SOLUTION. Since $f(t)$ is defined by a different formula on different intervals, we begin by breaking up the integral into three separate integrals.

$$
\mathcal{L}\{f(t)\}(s)=\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t=\int_{0}^{1} t^{2} \mathrm{e}^{-s t} d t+\int_{1}^{2} \mathrm{e}^{-s t} d t+\int_{2}^{\infty}(1-t) \mathrm{e}^{-s t} d t=
$$

Since

$$
\begin{gathered}
\int_{0}^{1} t^{2} \mathrm{e}^{-s t} d t=\left(\frac{2}{s^{3}}-\frac{2}{s^{2}}-\frac{1}{s}\right) \mathrm{e}^{-s}-\frac{2}{s^{3}}, \\
\int_{1}^{2} \mathrm{e}^{-s t} d t=\frac{1}{s}\left(\mathrm{e}^{-s}-\mathrm{e}^{-2 s}\right) \\
\int_{2}^{\infty}(1-t) \mathrm{e}^{-s t} d t=\left(\frac{1}{s}-\frac{1}{s^{2}}\right) \mathrm{e}^{-2 s}, \\
\mathcal{L}\{f(t)\}(s)=\left(\frac{2}{s^{3}}-\frac{2}{s^{2}}-\frac{1}{s}\right) \mathrm{e}^{-s}-\frac{2}{s^{3}}+\frac{1}{s}\left(\mathrm{e}^{-s}-\mathrm{e}^{-2 s}\right)+\left(\frac{1}{s}-\frac{1}{s^{2}}\right) \mathrm{e}^{-2 s}=
\end{gathered}
$$

$$
=\left(\frac{2}{s^{3}}-\frac{2}{s^{2}}\right) \mathrm{e}^{-s}-\frac{2}{s^{3}}-\frac{1}{s^{2}} \mathrm{e}^{-2 s} .
$$

The important property of the Laplace transform is its linearity. That is, the Laplace transform \mathcal{L} is a linear operator.

Theorem 1. (linearity of the transform) Let f_{1} and f_{2} be functions whose Laplace transform exist for $s>\alpha$ and c_{1} and c_{2} be constants. Then, for $s>\alpha$,

$$
\mathcal{L}\left\{c_{1} f_{1}+c_{2} f_{2}\right\}=c_{1} \mathcal{L}\left\{f_{1}\right\}+c_{2} \mathcal{L}\left\{f_{2}\right\}
$$

Example 2. Determine $\mathcal{L}\left\{10+5 \mathrm{e}^{2 t}+3 \cos 2 t\right\}$.
SOLUTION.

$$
\mathcal{L}\left\{10+5 \mathrm{e}^{2 t}+3 \cos 2 t\right\}=10 \mathcal{L}\{1\}+5 \mathcal{L}\left\{\mathrm{e}^{2 t}\right\}+3 \mathcal{L}\{\cos 2 t\}=\frac{10}{s}+\frac{5}{s-5}+3 \mathcal{L}\{\cos 2 t\}
$$

Since

$$
\begin{gathered}
\mathcal{L}\{\cos b t\}=\int_{0}^{\infty} \cos b t \mathrm{e}^{-s t} d t=\lim _{N \rightarrow \infty} \int_{0}^{N} \cos b t \mathrm{e}^{-s t} d t=\frac{s}{s^{2}+b^{2}} \\
\mathcal{L}\left\{10+5 \mathrm{e}^{2 t}+3 \cos 2 t\right\}=\frac{10}{s}+\frac{5}{s-5}+\frac{3 s}{s^{2}+4}
\end{gathered}
$$

Existence of the transform.

There are functions for which the improper integral in Definition 1 fails to converge for any value of s. For example, no Laplace transform exists for the function $\mathrm{e}^{t^{2}}$. Fortunately, the set of the functions for which the Laplace transform is defined includes many of the functions.

Definition 2. A function f is said to be piecewise continuous on a finite interval $[a, b]$ if f is continuous at every point in $[a, b]$, except possibly for a finite number of points at which $f(t)$ has a jump discontinuity.

A function $f(x)$ is said to be piecewise continuous on $[0, \infty)$ if $f(t)$ is piecewise continuous on $[0, N]$ for all $N>0$.

Example 3. Show that function

$$
f(t)= \begin{cases}\sin t, & 0 \leq t \leq \frac{\pi}{2} \\ \frac{\pi+2-x}{2}, & \frac{\pi}{2}<t \leq \pi+2 \\ 3, & t>\pi+2\end{cases}
$$

is piecewise continuous on $[0, \infty)$.
SOLUTION. $f(t)$ is continuous on the intervals $\left(0, \frac{\pi}{2}\right),\left(\frac{\pi}{2}, \pi+2\right),(\pi+2, \infty)$. The possible points of discontinuity are $t=\frac{\pi}{2}$ and $t=\pi+2$. Let's find

$$
\begin{gathered}
\lim _{t \rightarrow \frac{\pi}{2}-0} f(t)=\lim _{t \rightarrow \frac{\pi}{2}} \sin t=1 \\
\lim _{t \rightarrow \frac{\pi}{2}+0} f(t)=\lim _{t \rightarrow \frac{\pi}{2}} \frac{\pi+2-x}{2}=\frac{\pi}{4}+1
\end{gathered}
$$

$$
\begin{gathered}
\lim _{t \rightarrow(\pi+2)-0} f(t)=\lim _{t \rightarrow(\pi+2)} \frac{\pi+2-x}{2}=0 \\
\lim _{t \rightarrow(\pi+2)+0} f(t)=\lim _{t \rightarrow(\pi+2)} 3=3
\end{gathered}
$$

Since,

$$
\lim _{t \rightarrow \frac{\pi}{2}-0} f(t)=1 \neq \lim _{t \rightarrow \frac{\pi}{2}+0} f(t)=\frac{\pi}{4}+1
$$

and

$$
\lim _{t \rightarrow(\pi+2)-0} f(t)=0 \neq \lim _{t \rightarrow(\pi+2)+0} f(t)=3,
$$

$f(t)$ has jump discontinuities at $t=\frac{\pi}{2}$ and $t=\pi+2$. Thus, f is piecewice continuous.
A function that is piecewise continuous on a finite interval is integrable over that interval. However, piecewise continuity on $[0, \infty)$ is not enough to guarantee the existence of the improper integral over $[0, \infty)$; we also need to consider the growth of the integrand as $t \rightarrow \infty$.

Definition 3. A function $f(t)$ is said to be of exponential order α if there exist positive constants T and M s.t.

$$
|f(t)| \leq M \mathrm{e}^{\alpha t}, \text { for all } t \geq T
$$

Theorem 2. If $f(t)$ is piecewise continuous on $t \rightarrow \infty$ and of exponential order α, then $\mathcal{L}\{f\}(s)$ exists for $s>\alpha$.

Brief table of Laplace transform

$f(t)$	$F(s)=\mathcal{L}\{f\}(s)$
1	$\frac{1}{s}, \quad s>0$
$\mathrm{e}^{a t}$	$\frac{1}{s-a}, \quad s>a$
$t^{n}, \quad n=1,2, \ldots$	$\frac{n!}{s^{n+1}}, \quad s>0$
$\sin b t$	$\frac{b}{s^{2}+b^{2}}, \quad s>0$
$\cos b t$	$\frac{s^{2}+b^{2}}{}, \quad s>0$
$\mathrm{e}^{a t} t^{n}, \quad n=1,2, \ldots$	$\frac{n!}{(s-a)^{n+1}}, \quad s>a$
$\mathrm{e}^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
$\mathrm{e}^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$

