Chapter 7. Laplace Transforms.

Let f(x) be a function on $[0, \infty)$. The **Laplace transform** of f is the function F defined by the integral

$$\mathcal{L}{f}(s) = F(s) = \int_{0}^{\infty} f(t) e^{-st} dt.$$

f(t)	$F(s) = \mathcal{L}{f}(s)$
1	$\frac{1}{s}, s > 0$
e^{at}	$\frac{1}{s-a}, s > a$
$t^n, n = 1, 2, \dots$	$\frac{n!}{s^{n+1}}, s > 0$
$\sin bt$	$\left \frac{b}{s^2 + b^2}, s > 0 \right $
$\cos bt$	$\frac{s}{s^2+b^2}, s>0$
$e^{at}t^n, n = 1, 2, \dots$	$\frac{n!}{(s-a)^{n+1}}, s > a$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, s > a$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, s > a$

Brief table of Laplace transform

Section 7.3 Properties of the Laplace Transform.

Theorem 1. (translation in s) If the Laplace transform $\mathcal{L}{f}(s) = F(s)$ exist for $s > \alpha$, then

$$\mathcal{L}\{\mathrm{e}^{at}f\}(s) = F(s-a)$$

for $s > a + \alpha$.

Example 1. Determine (a) $\mathcal{L}\{e^{at} \cos bt\},$ (b) $\mathcal{L}\{e^{3t}t^2\},$ (c) $\mathcal{L}\{e^{2t} \sin^2 t\}.$

Theorem 2. (Laplace transform of the derivative) Let f(t) be continuous on $[0, \infty)$ and f'(t) be piecewise continuous on $[0, \infty)$, with both of exponential order α . Then, for $s > \alpha$

$$\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) - f(0).$$

Using induction, we can extend the last theorem to higher-order derivatives of f(t).

$$\mathcal{L}{f''}(s) = s\mathcal{L}{f'}(s) - f'(0) = s(s\mathcal{L}{f}(s) - f(0)) - f'(0) = s^2\mathcal{L}{f}(s) - sf(0) - f'(0).$$

In general, we obtain the following result.

Theorem 3. (Laplace transform of higher-order derivatives) Let f(t), $f'(t),...,f^{(n-1)}(t)$ be continuous on $[0,\infty)$ and let $f^{(n)}(t)$ be be piecewise continuous on $[0,\infty)$, with all these function of exponential order α . Then, for $s > \alpha$

$$\mathcal{L}\{f^{(n)}\}(s) = s^n \mathcal{L}\{f\}(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0).$$

Example 2. Let f(t) is continuous function. Prove that

$$\mathcal{L}\left\{\int_{0}^{t} f(\tau)d\tau\right\}(s) = \frac{1}{s}\mathcal{L}\left\{f(t)\right\}(s).$$

If $F(s) = \mathcal{L}{f}(s)$ then

$$F'(s) = \mathcal{L}\{-tf(t)\}(s)$$

Theorem 4. (derivatives of the Laplace transform) Let $F(s) = \mathcal{L}{f}(s)$ and assume f(t) is piecewise continuous on $[0, \infty)$ and of exponential order α . Then, for $s > \alpha$,

$$\mathcal{L}\lbrace t^n f(t)\rbrace(s) = (-1)^n \frac{d^n F}{ds^n}(s).$$

A consequence of the above theorem is that if f(t) is piecewise continuous and of exponential order, then its transform F(s) has derivatives of all orders.

Example 3. Determine

(a) $\mathcal{L}\{t\cos 2te^{-t}\},\$ (b) $\mathcal{L}\{t^2\sin 4t\}.$

Properties of Laplace transform

$$\mathcal{L}{f+g} = \mathcal{L}{f} + \mathcal{L}{g} \mathcal{L}{cf} = c\mathcal{L}{f} \text{ for any constant } c \mathcal{L}{e^{at}f}(s) = F(s-a) \mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) - f(0) \mathcal{L}{f''}(s) = s^{2}\mathcal{L}{f}(s) - sf(0) - f'(0) \mathcal{L}{f''}(s) = s^{n}\mathcal{L}{f}(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0) \mathcal{L}{t^{n}f(t)}(s) = (-1)^{n}\frac{d^{n}}{ds^{n}}(\mathcal{L}{f(t)})(s)$$