Chapter 7. Laplace Transforms.

Let $f(x)$ be a function on $[0, \infty)$. The Laplace transform of f is the function F defined by the integral

$$
\mathcal{L}\{f\}(s)=F(s)=\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t
$$

Brief table of Laplace transform

$f(t)$	$F(s)=\mathcal{L}\{f\}(s)$
1	$\frac{1}{s}, \quad s>0$
$\mathrm{e}^{a t}$	$\frac{1}{s-a}, \quad s>a$
$t^{n}, \quad n=1,2, \ldots$	$\frac{n!}{s^{n+1}}, \quad s>0$
$\sin b t$	$\frac{b}{s^{2}+b^{2}}, \quad s>0$
$\cos b t$	$\frac{s^{2}+b^{2}}{s^{2}}, \quad s>0$
$\mathrm{e}^{a t} t^{n}, \quad n=1,2, \ldots$	$\frac{n!}{(s-a)^{n+1}}, \quad s>a$
$\mathrm{e}^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
$\mathrm{e}^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$

Section 7.3 Properties of the Laplace Transform.

Theorem 1. (translation in s) If the Laplace transform $\mathcal{L}\{f\}(s)=F(s)$ exist for $s>\alpha$, then

$$
\mathcal{L}\left\{\mathrm{e}^{a t} f\right\}(s)=F(s-a)
$$

for $s>a+\alpha$.
Example 1. Determine
(a) $\mathcal{L}\left\{\mathrm{e}^{a t} \cos b t\right\}$,
(b) $\mathcal{L}\left\{\mathrm{e}^{3 t} t^{2}\right\}$,
(c) $\mathcal{L}\left\{e^{2 t} \sin ^{2} t\right\}$.

Theorem 2. (Laplace transform of the derivative) Let $f(t)$ be continuous on $[0, \infty)$ and $f^{\prime}(t)$ be piecewise continuous on $[0, \infty)$, with both of exponential order α. Then, for $s>\alpha$

$$
\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)
$$

Using induction, we can extend the last theorem to higher-order derivatives of $f(t)$.

$$
\mathcal{L}\left\{f^{\prime \prime}\right\}(s)=s \mathcal{L}\left\{f^{\prime}\right\}(s)-f^{\prime}(0)=s(s \mathcal{L}\{f\}(s)-f(0))-f^{\prime}(0)=s^{2} \mathcal{L}\{f\}(s)-s f(0)-f^{\prime}(0)
$$

In general, we obtain the following result.

Theorem 3. (Laplace transform of higher-order derivatives) Let $f(t), f^{\prime}(t), \ldots, f^{(n-1)}(t)$ be continuous on $[0, \infty)$ and let $f^{(n)}(t)$ be be piecewise continuous on $[0, \infty)$, with all these function of exponential order α. Then, for $s>\alpha$

$$
\mathcal{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathcal{L}\{f\}(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0) .
$$

Example 2. Let $f(t)$ is continuous function. Prove that

$$
\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}(s)=\frac{1}{s} \mathcal{L}\{f(t)\}(s)
$$

If $F(s)=\mathcal{L}\{f\}(s)$ then

$$
F^{\prime}(s)=\mathcal{L}\{-t f(t)\}(s) .
$$

Theorem 4. (derivatives of the Laplace transform) Let $F(s)=\mathcal{L}\{f\}(s)$ and assume $f(t)$ is piecewise continuous on $[0, \infty)$ and of exponential order α. Then, for $s>\alpha$,

$$
\mathcal{L}\left\{t^{n} f(t)\right\}(s)=(-1)^{n} \frac{d^{n} F}{d s^{n}}(s) .
$$

A consequence of the above theorem is that if $f(t)$ is piecewise continuous and of exponential order, then its transform $F(s)$ has derivatives of all orders.

Example 3. Determine
(a) $\mathcal{L}\left\{t \cos 2 t \mathrm{e}^{-t}\right\}$,
(b) $\mathcal{L}\left\{t^{2} \sin 4 t\right\}$.

Properties of Laplace transform

$$
\begin{aligned}
& \mathcal{L}\{f+g\}=\mathcal{L}\{f\}+\mathcal{L}\{g\} \\
& \mathcal{L}\{c f\}=c \mathcal{L}\{f\} \text { for any constant } c \\
& \mathcal{L}\left\{\mathrm{e}^{a t} f\right\}(s)=F(s-a) \\
& \mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0) \\
& \mathcal{L}\left\{f^{\prime \prime}\right\}(s)=s^{2} \mathcal{L}\{f\}(s)-s f(0)-f^{\prime}(0) \\
& \mathcal{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathcal{L}\{f\}(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0) \\
& \mathcal{L}\left\{t^{n} f(t)\right\}(s)=(-1)^{n} \frac{d^{n}}{d s^{n}}(\mathcal{L}\{f(t)\})(s)
\end{aligned}
$$

