Example 1. Draw the isoclines with their direction markers and sketch several solution curves, including the the curve satisfying the given initial condition

$$
y^{\prime}=2 x^{2}-y, \quad y(0)=0
$$

SOLUTIONS

The isoclines for the given equations are the parabolas $2 x^{2}-y=C$, here C is an arbitrary constant.

Figure 1. Isoclines for $y^{\prime}=2 x^{2}-y$

Figure 2. Direction field for $y^{\prime}=2 x^{2}-y$

Figure 3. Solutions to $y^{\prime}=2 x^{2}-y$

Section 1.4 The Approximation Method of Euler

Euler's method (or the tangent line method) is a procedure for constructing approximate solutions to an initial value problem for a first-order differential equation

$$
\begin{gather*}
y^{\prime}=f(x, y) \tag{1}\\
y\left(x_{0}\right)=y_{0}
\end{gather*}
$$

The main idea of this method is to construct a polygonal (broken line) approximation to the solutions of the problem (1).

Assume that the the problem (1) has a unique solution $\varphi(x)$ in some interval centered at x_{0}. Let h be a fixed positive number (called the step size) and consider the equally spaced points

$$
x_{n}:=x_{0}+n h, \quad n=0,1,2, \ldots
$$

The construction of values y_{n} that approximate the solution values $\varphi\left(x_{n}\right)$ proceeds as follows. At the point $\left(x_{0}, y_{0}\right)$, the slope of the solution to (1) is given by $d y / d x=f\left(x_{0}, y_{0}\right)$. Hence, the tangent line to the curve $y=\varphi x$ at the initial point $\left(x_{0}, y_{0}\right)$ is

$$
\begin{gathered}
y-y_{0}=f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right), \quad \text { or } \\
y=y_{0}+f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right) .
\end{gathered}
$$

Using the tangent line to approximate φx, we find that for the point $x_{1}=x_{0}+h$

$$
\varphi\left(x_{1}\right) \approx y_{1}:=y_{0}+f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right) .
$$

Next, starting at the point $\left(x_{1}, y_{1}\right)$, we construct the line with slope equal to $f\left(x_{1}, y_{1}\right)$. If we follow the line in stepping from x_{1} to $x_{2}=x_{1}+h$, we arrive at the approximation

$$
\varphi\left(x_{2}\right) \approx y_{2}:=y_{1}+f\left(x_{1}, y_{1}\right)\left(x-x_{1}\right)
$$

Repeating the process, we get

$$
\begin{gathered}
\varphi\left(x_{3}\right) \approx y_{3}:=y_{2}+f\left(x_{2}, y_{2}\right)\left(x-x_{2}\right) \\
\varphi\left(x_{4}\right) \approx y_{4}:=y_{3}+f\left(x_{3}, y_{3}\right)\left(x-x_{3}\right), \text { etc. }
\end{gathered}
$$

This simple procedure is Euler's method and can be summarized by the recursive formulas

$$
\begin{gather*}
x_{n+1}:=x_{0}+(n+1) h \tag{2}\\
y_{n+1}:=y_{n}+f\left(x_{n}, y_{n}\right)\left(x-x_{n}\right), \quad n=0,1,2, \ldots \tag{3}
\end{gather*}
$$

Figure 1. Polygonal-line approximation given by Euler's method

